Date
Fri, 10 May 2013
14:00
Location
L1
Speaker
Dr Rachele Allena
Organisation
ENSAM

Mechanics plays an important role during several biological phenomena such as morphogenesis,

wound healing, bone remodeling and tumorogenesis. Each one of these events is triggered by specific

elementary cell deformations or movements that may involve single cells or populations of cells. In

order to better understand how cell behave and interact, especially during degenerative processes (i.e.

tumorogenesis and metastasis), it has become necessary to combine both numerical and experimental

approaches. Particularly, numerical models allow determining those parameters that are still very

difficult to experimentally measure such as strains and stresses.

During the last few years, I have developed new finite element models to simulate morphogenetic

movements in Drosophila embryo, limb morphogenesis, bone remodeling as well as single and

collective cell migration. The common feature of these models is the multiplicative decomposition of

the deformation gradient which has been used to take into account both the active and the passive

deformations undergone by the cells. I will show how this mechanical approach, firstly used in the

seventies by Lee and Mandel to describe large viscoelastic deformations, can actually be very

powerful in modeling the biological phenomena mentioned above.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.