Date
Tue, 15 Oct 2013
Time
14:00 - 14:30
Location
L5
Speaker
David Hewett
Organisation
Mathematics Institute

Linear wave scattering problems (e.g. for acoustic, electromagnetic and elastic waves) are ubiquitous in science and engineering applications. However, conventional numerical methods for such problems (e.g. FEM or BEM with piecewise polynomial basis functions) are prohibitively expensive when the wavelength of scattered wave is small compared to typical lengthscales of the scatterer (the so-called "high frequency" regime). This is because the solution possesses rapid oscillations which are expensive to capture using conventional approximation spaces. In this talk I will outline some of my recent work in the development of "hybrid numerical-asymptotic" methods, which incur significantly reduced computational cost. These methods use approximation spaces containing oscillatory basis functions, carefully chosen to capture the high frequency asymptotic behaviour. In particular I will discuss some of the interesting challenges arising from non convex, penetrable and three-dimensional scatterers.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.