Date
Thu, 30 Jan 2014
Time
16:00 - 17:00
Location
L3
Speaker
Jean-Charles Delvenne
Organisation
Université catholique de Louvain (Belgium)

Many real-life complex systems arise as a network of simple interconnected individual agents. A central question is to determine how network topology and individual agent dynamics combine to create the global dynamics.

In this talk we focus on the case of continuous-time random walks on networks, with a waiting time of the walker on each node assuming arbitrary probability distributions. Such random walks are useful to model diffusion processes over complex temporal networks representing human interactions, often characterized by non-Poissonian contact patterns.

We find that the mixing time of the random walker, i.e. the relaxation time for the process to reach stationarity, is determined by a combination of three factors: the spectral gap, associated to bottlenecks in the underlying topology, burstiness, related to the second moment of the waiting time distribution, and the characteristic time of its exponential tail, which is an indicator of the tail `fatness'. We show

theoretically that a strong modular structure dampens the importance of burstiness, and empirically that either of the three factors may be dominant in real-life data.

These results are available in arXiv:1309.4155

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:45.