Matroids over a ring: motivations, examples, applications.

18 February 2014
14:30
Abstract

Several objects can be associated to a list of vectors with integer coordinates: among others, a family of tori called toric arrangement, a convex polytope called zonotope, a function called vector partition function; these objects have been described in a recent book by De Concini and Procesi. The linear algebra of the list of vectors is axiomatized by the combinatorial notion of a matroid; but several properties of the objects above depend also on the arithmetics of the list. This can be encoded by the notion of a "matroid over Z". Similarly, applications to tropical geometry suggest the introduction of matroids over a discrete valuation ring.Motivated by the examples above, we introduce the more general notion of a "matroid over a commutative ring R". Such a matroid arises for example from a list of elements in a R-module. When R is a Dedekind domain, we can extend the usual properties and operations holding for matroids (e.g., duality). We can also compute the Tutte-Grothendieck ring of matroids over R; the class of a matroid in such a ring specializes to several invariants, such as the Tutte polynomial and the Tutte quasipolynomial. We will also outline other possible applications and open problems. (Joint work with Alex Fink).

  • Combinatorial Theory Seminar