Stochastic-Dynamical Methods for Molecular Modelling

29 May 2014
Ben Leimkuhler
Molecular modelling has become a valuable tool and is increasingly part of the standard methodology of chemistry, physics, engineering and biology. The power of molecular modelling lies in its versatility: as potential energy functions improve, a broader range of more complex phenomena become accessible to simulation, but much of the underlying methodology can be re-used. For example, the Verlet method is still the most popular molecular dynamics scheme for constant energy molecular dynamics simulations despite it being one of the first to be proposed for the purpose. One of the most important challenges in molecular modelling remains the computation of averages with respect to the canonical Gibbs (constant temperature) distribution, for which the Verlet method is not appropriate. Whereas constant energy molecular dynamics prescribes a set of equations (Newton's equations), there are many alternatives for canonical sampling with quite different properties. The challenge is therefore to identify formulations and numerical methods that are robust and maximally efficient in the computational setting. One of the simplest and most effective methods for sampling is based on Langevin dynamics which mimics coupling to a heat bath by the incorporation of random forces and an associated dissipative term. Schemes for Langevin dynamics simulation may be developed based on the familiar principle of splitting. I will show that the invariant measure ('long term') approximation may be strongly affected by a simple re-ordering of the terms of the splitting. I will describe a transition in weak numerical order of accuracy that occurs (in one case) in the t->infty limit. I will also entertain some more radical suggestions for canonical sampling, including stochastic isokinetic methods that enable the use of greatly enlarged timesteps for expensive but slowly-varying force field components.
  • Industrial and Applied Mathematics Seminar