Stochastic Reaction-Diffusion Methods for Modeling Cellular Processes

5 February 2015
Samuel Isaacson

Particle-based stochastic reaction diffusion methods have become a 
popular approach for studying the behavior of cellular processes in 
which both spatial transport and noise in the chemical reaction process 
can be important. While the corresponding deterministic, mean-field 
models given by reaction-diffusion PDEs are well-established, there are 
a plethora of different stochastic models that have been used to study 
biological systems, along with a wide variety of proposed numerical 
solution methods.

In this talk I will motivate our interest in such methods by first 
summarizing several applications we have studied, focusing on how the 
complicated ultrastructure within cells, as reconstructed from X-ray CT 
images, might influence the dynamics of cellular processes. I will then 
introduce our attempt to rectify the major drawback to one of the most 
popular particle-based stochastic reaction-diffusion models, the lattice 
reaction-diffusion master equation (RDME). We propose a modified version 
of the RDME that converges in the continuum limit that the lattice 
spacing approaches zero to an appropriate spatially-continuous model. 
Time-permitting, I will discuss several questions related to calibrating 
parameters in the underlying spatially-continuous model.

  • Industrial and Applied Mathematics Seminar