Geometric Modeling of Protein Folds

4 December 2014
16:00
Andrew Hausrath
Abstract
The folded structures of proteins display a remarkable variety of three-dimensional forms, and this structural diversity confers to proteins their equally remarkable functional diversity. The accelerating accumulation of experimental structures, and the declining numbers of novel folds among them suggests that a substantial fraction of the protein folds used in nature have already been observed. The physical forces stabilizing the folded structures of proteins are now understood in some detail, and much progress has been made on the classical problem of predicting the structure of a particular protein from its sequence. However, there is as yet no satisfactory theory describing the “morphology” of protein folds themselves. This talk will describe an approach to this problem based on the description of protein folds as geometric objects using the differential geometry of curves and surfaces. Applications of the theory toward modeling of diverse protein folds and assemblies which are refractory to high-resolution structure determination will be emphasized.
  • Industrial and Applied Mathematics Seminar