Cycles in triangle-free graphs of large chromatic number

28 October 2014
Benny Sudakov

More than twenty years ago Erdős conjectured that a triangle-free graph $G$ of chromatic number $k$ contains cycles of at least $k^{2−o(1)}$ different lengths. In this talk we prove this conjecture in a stronger form, showing that every such $G$ contains cycles of $ck^2\log k$ consecutive lengths, which is tight. Our approach can be also used to give new bounds on the number of different cycle lengths for other monotone classes of $k$-chromatic graphs, i.e.,  clique-free graphs and graphs without odd cycles.

Joint work with A. Kostochka and J. Verstraete.

  • Combinatorial Theory Seminar