Date
Tue, 20 Jan 2015
Time
14:00 - 14:30
Location
L3
Speaker
Geoff Stanley
Organisation
University of Oxford

A key question to develop our understanding of turbulence in shear flows is: what is the smallest perturbation to the laminar flow that causes a transition to turbulence, and how does this change with the Reynolds number, R?  Finding this so-called ``minimal seed'' is as yet unachievable in direct numerical simulations of the Navier-Stokes equations. We search for the minimal seed in a low-dimensional model analogue to the full Navier-Stokes in plane sinusoidal flow, developed by Waleffe (1997). A previous such calculation found the minimal seed as the least distance (energy norm) from the origin (laminar flow) to the basin of attraction of another fixed point (turbulent attractor).  However, using a non-linear optimization technique, we found an internal boundary of the basin of attraction of the origin that separates flows which directly relaminarize from flows which undergo transient turbulence. It is this boundary which contains the minimal seed, and we find it to be smaller than the previously calculated minimal seed. We present results over a range of Reynolds numbers up to 2000 and find an R^{-1} scaling law fits reasonably well. We propose a new scaling law which asymptotes to R^{-1} for large R but, using some additional information, matches the minimal seed scaling better at low R.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.