Local resilience of spanning subgraphs in sparse random graphs

10 March 2015
14:30
Julia Böttcher
Abstract

Dellamonica, Kohayakawa, Rödl and Ruciński showed that for $p=C(\log n/n)^{1/d}$ the random graph $G(n,p)$ contains asymptotically almost surely all spanning graphs $H$ with maximum degree $d$ as subgraphs. In this talk I will discuss a resilience version of this result, which shows that for the same edge density, even if a $(1/k-\epsilon)$-fraction of the edges at every vertex is deleted adversarially from $G(n,p)$, the resulting graph continues to contain asymptotically almost surely all spanning $H$ with maximum degree $d$, with sublinear bandwidth and with at least $C \max\{p^{-2},p^{-1}\log n\}$ vertices not in triangles. Neither the restriction on the bandwidth, nor the condition that not all vertices are allowed to be in triangles can be removed. The proof uses a sparse version of the Blow-Up Lemma. Joint work with Peter Allen, Julia Ehrenmüller, Anusch Taraz.

  • Combinatorial Theory Seminar