Group Meeting

29 October 2015
16:00
Michael Gomez, Jake Taylor-King, Andrew Krause, Zach Wilmott
Abstract

Michael Gomez:

Title: The role of ghosts in elastic snap-through
Abstract: Elastic `snap-through' buckling is a striking instability of many elastic systems with natural curvature and bistable states. The conditions under which bistability exists have been reasonably well studied, not least because a number of engineering applications make use of the rapid transitions between states. However, the dynamics of the transition itself remains much less well understood. Several examples have been studied that show slower dynamics than would be expected based on purely elastic timescales of motion, with the natural conclusion drawn that some other effect, such as viscoelasticity, must play a role. I will present analysis (and hopefully experiments) of a purely elastic system that shows similar `anomalous dynamics'; however, we show that here this dynamics is a consequence of the ‘ghost’ of the snap-through bifurcation.

Andrew Krause:

Title: Fluid-Growth Interactions in Bioactive Porous Media   
Abstract: Recent models in Tissue Engineering have considered pore blocking by cells in a porous tissue scaffold, as well as fluid shear effects on cell growth. We implement a suite of models to better understand these interactions between cell growth and fluid flow in an active porous medium. We modify some existing models in the literature that are spatially continuous (e.g. Darcy's law with a cell density dependent porosity). However, this type of model is based on assumptions that we argue are not good at describing geometric and topological properties of a heterogeneous pore network, and show how such a network can emerge in this system. Therefore we propose a different modelling paradigm to directly describe the mesoscopic pore networks of a tissue scaffold. We investigate a deterministic network model that can reproduce behaviour of the continuum models found in the literature, but can also exhibit finite-scale effects of the pore network. We also consider simpler stochastic models which compare well with near-critical Percolation behaviour, and show how this kind of behaviour can arise from our deterministic network model.

Jake Taylor-King
Title:A Kinetic Approach to Evolving Spatial Networks, with an Application to Osteocyte Network Formation 
Abstract:We study an evolving network where the nodes are considered as represent particles with a corresponding state vector. Edges between nodes are created and destroyed as a Poisson process, and new nodes enter the system. We define the concept of a “local state degree distribution” (LSDD) as a degree distribution that is local to a particular point in phase space. We then derive a differential equation that is satisfied approximately by the LSDD under a mean field assumption; this allows us to calculate the degree distribution. We examine the validity of our derived differential equation using numerical simulations, and we find a close match in LSDD when comparing theory and simulation. Using the differential equation derived, we also propose a continuum model for osteocyte network formation within bone. The structure of this network has implications regarding bone quality. Furthermore, osteocyte network structure can be disrupted within cancerous microenvironments. Evidence suggests that cancerous osteocyte networks either have dendritic overgrowth or underdeveloped dendrites. This model allows us to probe the density and degree distribution of the dendritic network. We consider a traveling wave solution of the osteocyte LSDD profile which is of relevance to osteoblastic bone cancer (which induces net bone formation). We then hypothesise that increased rates of differentiation would lead to higher densities of osteocytes but with a lower quantity of dendrites. 
 
 

 

 

 

  • Industrial and Applied Mathematics Seminar