Embedding the Binomial Hypergraph into the Random Regular Hypergraph

9 June 2015
14:30
Matas ҆ileikis
Abstract

Let $G(n,d)$ be a random $d$-regular graph on $n$ vertices. In 2004 Kim and Vu showed that if $d$ grows faster than $\log n$ as $n$ tends to infinity, then one can define a joint distribution of $G(n,d)$ and two binomial random graphs $G(n,p_1)$ and $G(n,p_2)$ -- both of which have asymptotic expected degree $d$ -- such that with high probability $G(n,d)$ is a supergraph of $G(n,p_1)$ and a subgraph of $G(n,p_2)$. The motivation for such a coupling is to deduce monotone properties (like Hamiltonicity) of $G(n,d)$ from the simpler model $G(n,p)$. We present our work with A. Dudek, A. Frieze and A. Rucinski on the Kim-Vu conjecture and its hypergraph counterpart.

  • Combinatorial Theory Seminar