Modelling Anti-Surfactants and Thixotropic Lubrication

17 November 2016
16:00
Stephen Wilson
Abstract

In the first part of the talk, I will describe a fluid-dynamical model for a "anti-surfactant" solution (such as salt dissolved in water) whose surface tension is an increasing function of bulk solvent concentration. In particular, I will show that this model is consistent with the standard model for surfactants, and predicts a novel instability for anti-surfactants not present for surfactants. Some further details are given in the recent paper by Conn et al. Phys. Rev. E 93 043121 (2016).

 

In the second part of the talk, I will formulate and analyse the governing equations for the flow of a thixotropic or antithixotropic fluid in a slowly varying channel. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter. If time permits, I will seek draw some conclusions relevant to thixotropic flow in porous media. Some further details are given in the forthcoming paper by Pritchard et al. to appear in J Non-Newt. Fluid Mech (2016).

  • Industrial and Applied Mathematics Seminar