Finite Reflection Groups and Graph Norms

10 May 2016
14:30
Joonkyung Lee
Abstract

For any given graph H, we may define a natural corresponding functional ||.||_H. We then say that H is norming if ||.||_H is a semi-norm. A similar notion ||.||_{r(H)} is defined by || f ||_{r(H)}:=|| | f | ||_H and H is said to be weakly norming if ||.||_{r(H)} is a norm. Classical results show that weakly norming graphs are necessarily bipartite. In the other direction, Hatami showed that even cycles, complete bipartite graphs, and hypercubes are all weakly norming. Using results from the theory of finite reflection groups, we demonstrate that any graph which is edge-transitive under the action of a certain natural family of automorphisms is weakly norming. This result includes all previous examples of weakly norming graphs and adds many more. We also include several applications of our results. In particular, we define and compare a number of generalisations of Gowers' octahedral norms and we prove some new instances of Sidorenko's conjecture. Joint work with David Conlon.

  • Combinatorial Theory Seminar