Date
Tue, 02 May 2017
14:00
Location
L3
Speaker
Gongguo Tang
Organisation
Colorado School of Mines

The past few years have seen a surge of interest in nonconvex reformulations of convex optimizations using nonlinear reparameterizations of the optimization variables. Compared with the convex formulations, the nonconvex ones typically involve many fewer variables, allowing them to scale to scenarios with millions of variables. However, one pays the price of solving nonconvex optimizations to global optimality, which is generally believed to be impossible. In this talk, I will characterize the nonconvex geometries of several low-rank matrix optimizations. In particular, I will argue that under reasonable assumptions, each critical point of the nonconvex problems either corresponds to the global optimum of the original convex optimizations, or is a strict saddle point where the Hessian matrix has a negative eigenvalue. Such a geometric structure ensures that many local search algorithms can converge to the global optimum with random initializations. Our analysis is based on studying how the convex geometries are transformed under nonlinear parameterizations.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.