Date
Thu, 08 Mar 2018
Time
16:00 - 17:00
Location
L4
Speaker
Mike Ludkovski
Organisation
University of California Santa Barbara


We consider calculation of VaR/TVaR capital requirements when the underlying economic scenarios are determined by simulatable risk factors. This problem involves computationally expensive nested simulation, since evaluating expected portfolio losses of an outer scenario (aka computing a conditional expectation) requires inner-level Monte Carlo. We introduce several inter-related machine learning techniques to speed up this computation, in particular by properly accounting for the simulation noise. Our main workhorse is an advanced Gaussian Process (GP) regression approach which uses nonparametric spatial modeling to efficiently learn the relationship between the stochastic factors defining scenarios and corresponding portfolio value. Leveraging this emulator, we develop sequential algorithms that adaptively allocate inner simulation budgets to target the quantile region. The GP framework also yields better uncertainty quantification for the resulting VaR/\TVaR estimators that reduces bias and variance compared to existing methods.  Time permitting, I will highlight further related applications of statistical emulation in risk management.
This is joint work with Jimmy Risk (Cal Poly Pomona). 
 

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.