The Matroid of Barcodes: Combinatorial Foundations in TDA

9 March 2018
Greg Henselman

Topological data analysis (TDA) is a robust field of mathematical data science specializing in complex, noisy, and high-dimensional data.  While the elements of modern TDA have existed since the mid-1980’s, applications over the past decade have seen a dramatic increase in systems analysis, engineering, medicine, and the sciences.  Two of the primary challenges in this field regard modeling and computation: what do topological features mean, and are they computable?  While these questions remain open for some of the simplest structures considered in TDA — homological persistence modules and their indecomposable submodules — in the past two decades researchers have made great progress in algorithms, modeling, and mathematical foundations through diverse connections with other fields of mathematics.  This talk will give a first perspective on the idea of matroid theory as a framework for unifying and relating some of these seemingly disparate connections (e.g. with quiver theory, classification, and algebraic stability), and some questions that the fields of matroid theory and TDA may mutually pose to one another.  No expertise in homological persistence or general matroid theory will be assumed, though prior exposure to the definition of a matroid and/or persistence module may be helpful.

  • Applied Algebra and Topology