Light scattering by atmospheric ice crystals - a hybrid numerical-asymptotic approach

17 January 2019
16:00
to
17:30
Dr. David Hewett
Abstract

Accurate simulation of electromagnetic scattering by ice crystals in clouds is an important problem in atmospheric physics, with single scattering results feeding directly into the radiative transfer models used to predict long-term climate behaviour. The problem is challenging for numerical simulation methods because the ice crystals in a given cloud can be extremely varied in size and shape, sometimes exhibiting fractal-like geometrical characteristics and sometimes being many hundreds or thousands of wavelengths in diameter. In this talk I will focus on the latter "high-frequency" issue, describing a hybrid numerical-asymptotic boundary element method for the simplified problem of acoustic scattering by penetrable convex polygons, where high frequency asymptotic information is used to build a numerical approximation space capable of achieving fixed accuracy of approximation with frequency-independent computational cost. 

  • Industrial and Applied Mathematics Seminar