The Hitchin connection in (almost) arbitrary characteristic.

28 October 2019
Johan Martens

Further Information: 

The Hitchin connection is a flat projective connection on bundles of non-abelian theta-functions over the moduli space of curves, originally introduced by Hitchin in a Kahler context.  We will describe a purely algebra-geometric construction of this connection that also works in (most)positive characteristics.  A key ingredient is an alternative to the Narasimhan-Atiyah-Bott Kahler form on the moduli space of bundles on a curve.  We will comment on the connection with some related topics, such as the Grothendieck-Katz p-curvature conjecture.  This is joint work with Baier, Bolognesi and Pauly.


  • Geometry and Analysis Seminar