Date
Tue, 25 Feb 2020
14:00
Location
L2
Speaker
Yuji Nakatsukasa
Organisation
Oxford

Randomized SVD has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson (who is speaking twice this week), and Tropp (SIREV 2011) contains extensive analysis, and made it a very popular method. 
The complexity for $m\times n$ matrices is $O(Nr+(m+n)r^2)$ where $N$ is the cost of a (fast) matrix-vector multiplication; which becomes $O(mn\log n+(m+n)r^2)$ for dense matrices. This work uses classical results in numerical linear algebra to reduce the computational cost to $O(Nr)$ without sacrificing numerical stability. The cost is essentially optimal for many classes of matrices, including $O(mn\log n)$ for dense matrices. The method can also be adapted for updating, downdating and perturbing the matrix, and is especially efficient relative to previous algorithms for such purposes.  

 

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.