Segre and Verlinde formulas for moduli of sheaves on surfaces

12 October 2020
Lothar Gottsche

This is a report on joint work with Martijn Kool. 

Recently, Marian-Oprea-Pandharipande established a generalization of Lehn’s conjecture for Segre numbers associated to Hilbert schemes of points on surfaces. Extending work of Johnson, they provided a conjectural correspondence between Segre and Verlinde numbers. For surfaces with holomorphic 2-form, we propose conjectural generalizations of their results to moduli spaces of stable sheaves of higher rank. 

Using Mochizuki’s formula, we derive a universal function which expresses virtual Segre and Verlinde numbers of surfaces with holomorphic 2-form in terms of Seiberg- Witten invariants and intersection numbers on products of Hilbert schemes of points. We use this to  verify our conjectures in examples. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar