Random Steiner complexes and simplical spanning trees

17 November 2020
Ron Rosenthal

Further Information: 

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.


A spanning tree of $G$ is a subgraph of $G$ with the same vertex set as $G$ that is a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in random $k$-regular graphs, showing that the number of spanning trees $\kappa_1(G_n)$ in a random $k$-regular graph on $n$ vertices satisfies $\lim_{n \to \infty} (\kappa_1(G_n))^{1/n} = c_{1,k}$ in probability, where $c_{1,k} = (k-1)^{k-1} (k^2-2k)^{-(k-2)/2}$.

In this talk we will discuss a high-dimensional of the matching model for simplicial complexes, known as random Steiner complexes. In particular, we will prove a high-dimensional counterpart of McKay's result and discuss the local limit of such random complexes. 
Based on a joint work with Lior Tenenbaum. 

  • Combinatorial Theory Seminar