Date
Mon, 31 May 2021
13:00
Location
Virtual
Speaker
Sven Krippendorf
Organisation
LMU München

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in ℙ4.

I briefly give an overview on the key ML frameworks involved in this analysis (neural networks, auto-differentiation). This talk is mainly based on 2012.04656.

Further Information

Please note that the time of this meeting has been changed to 13:00.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 15:24.