Seminar series
Date
Tue, 01 Jun 2021
Time
14:00 - 15:00
Location
Virtual
Speaker
David O'Sullivan and Joseph D O'Brien
Organisation
University of Limerick

Online social networks such asTwitter, Facebook, Instagram and TikTokserve as mediafor the spread of information between their users.We areinterested in developing models forthis information diffusion to gain a greater understanding of its drivers. Some models forthe spread ofonlinebehaviour and informationassume that the information behaves similarly to a virus, where infection is equally likely after each exposure, these dynamics are known as a simple contagion. In a simple contagion, the exposures are independent of each other.However,online adoption of some behaviour and content has been empirically observed to be more likely after multiple exposures from their network neighbours, the exposures are not independent of each other, we refer to this as a complex contagion.Analytically tractable descriptions of complex contagions havebeendeveloped for continuous-time dynamics. These extend mean-field and pair approximation methods to account for clustering in the network topologies; however, no such analogous treatments for discrete-time cascade processes exist using branching processes. We describe a novel definition of complex contagion adoption dynamics and show how to construct multi-type branching processeswhichaccount for clustering on networks. We achieve this by tracking the evolution of a cascade via different classes of clique motifs whichaccount for the different numbers of active, inactive and removed nodes. This description allows for extensive MonteCarlo simulations (which are faster than network-based simulations), accurate analytical calculation of cascade sizes, determination of critical behaviour and other quantities of interest

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.