Date
Tue, 30 Nov 2021
14:00
Location
L6
Speaker
Candy Bowtell
Organisation
Oxford/Birmingham

The $n$-queens problem asks how many ways there are to place $n$ queens on an $n \times n$ chessboard so that no two queens can attack one another, and the toroidal $n$-queens problem asks the same question where the board is considered on the surface of a torus. Let $Q(n)$ denote the number of $n$-queens configurations on the classical board and $T(n)$ the number of toroidal $n$-queens configurations. The toroidal problem was first studied in 1918 by Pólya who showed that $T(n)>0$ if and only if $n \equiv 1,5 \mod 6$. Much more recently Luria showed that $T(n)\leq ((1+o(1))ne^{-3})^n$ and conjectured equality when $n \equiv 1,5 \mod 6$. We prove this conjecture, prior to which no non-trivial lower bounds were known to hold for all (sufficiently large) $n \equiv 1,5 \mod 6$. We also show that $Q(n)\geq((1+o(1))ne^{-3})^n$ for all $n \in \mathbb{N}$ which was independently proved by Luria and Simkin and, combined with our toroidal result, completely settles a conjecture of Rivin, Vardi and Zimmerman regarding both $Q(n)$ and $T(n)$. 

In this talk we'll discuss our methods used to prove these results. A crucial element of this is translating the problem to one of counting matchings in a $4$-partite $4$-uniform hypergraph. Our strategy combines a random greedy algorithm to count `almost' configurations with a complex absorbing strategy that uses ideas from the methods of randomised algebraic construction and iterative absorption.

This is joint work with Peter Keevash.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.