Date
Thu, 18 Jan 2024
Time
12:00 - 13:00
Location
L3
Speaker
Nico Gray
Organisation
University of Manchester

During the last fifteen years, there has been a paradigm shift in the continuum modelling of granular materials; most notably with the development of rheological models, such as the μ(I)-rheology (where μ is the friction and I is the inertial number), but also with significant advances in theories for particle segregation. This talk details theoretical and numerical frameworks (based on OpenFOAM®) which unify these disconnected endeavours. Coupling the segregation with the flow, and vice versa, is not only vital for a complete theory of granular materials, but is also beneficial for developing numerical methods to handle evolving free surfaces. This general approach is based on the partially regularized incompressible μ(I)-rheology, which is coupled to a theory for gravity/shear-driven segregation (Gray & Ancey, J. Fluid Mech., vol. 678, 2011, pp. 353–588). These advection–diffusion–segregation equations describe the evolving concentrations of the constituents, which then couple back to the variable viscosity in the incompressible Navier–Stokes equations. A novel feature of this approach is that any number of differently sized phases may be included, which may have disparate frictional properties. The model is used to simulate the complex particle-size segregation patterns that form in a partially filled triangular rotating drum. There are many other applications of the theory to industrial granular flows, which are the second most common material used after fluids. The same processes also occur in geophysical flows, such as snow avalanches, debris flows and dense pyroclastic flows. Depth-averaged models, that go beyond the μ(I)-rheology, will also be derived to capture spontaneous self-channelization and levee formation, as well as complex segregation-induced flow fingering effects, which enhance the run-out distance of these hazardous flows.

 

" "

 

Further Information

Professor Nico Gray is based in the Department of Mathematics at the University of Manchester. 

This is from his personal website:

My research interests lie in understanding and modelling the flow of granular materials, in small scale experiments, industrial processes and geophysical flows.

[Mixing in a rotating drum][Flow past a rearward facing pyramid]

Current research is aimed at understanding fundamental processes such as the flow past obstacles, shock waves, dead-zones, fluid-solid phase transitions, particle size segregation and pattern formation. A novel and important feature of all my work is the close interplay of theory, numerical computation and experiment to investigate these nonlinear systems. I currently have three active experiments which are housed in two laboratories at the Manchester Centre for Nonlinear Dynamics. You can click on the videos and pictures as well as the adjacent toolbar to find out more about specific problems that I am interested in.

Please contact us with feedback and comments about this page. Last updated on 08 Jan 2024 11:05.