Date
Tue, 31 May 2011
Time
14:30 - 15:30
Location
L3
Speaker
Colin Cooper
Organisation
King's College London

We consider random walks on two classes of random graphs and explore the likely structure of the the set of unvisited vertices or vacant set. In both cases, the size of the vacant set $N(t)$ can be obtained explicitly as a function of $t$. Let $\Gamma(t)$ be the subgraph induced by the vacant set. We show that, for random graphs $G_{n,p}$ above the connectivity threshold, and for random regular graphs $G_r$, for constant $r\geq 3$, there is a phase transition in the sense of the well-known Erdos-Renyi phase transition. Thus for $t\leq (1-\epsilon)t^*$ we have a unique giant plus components of  size $O(\log n)$ and for $t\geq (1+\epsilon)t^*$ we have only components of  size $O(\log n)$.

In the case of $G_r$ we describe the likely degree sequence, size of the giant component and structure of the small ($O(\log n)$) size components.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.