Date
Tue, 07 Jun 2011
Time
14:30 - 15:30
Location
L3
Speaker
Gregory Sorkin
Organisation
LSE

The 2-dimensional assignment problem (minimum cost matching) is solvable in polynomial time, and it is known that a random instance of size n, with entries chosen independently and uniformly at random from [0,1], has expected cost tending to π^2/6.  In dimensions 3 and higher, the "planar" assignment problem is NP-complete, but what is the expected cost for a random instance, and how well can a heuristic do?  In d dimensions, the expected cost is of order at least n^{2-d} and at most ln n times larger, but the upper bound is non-constructive.  For 3 dimensions, we show a heuristic capable of producing a solution within a factor n^ε of the lower bound, for any constant ε, in time of order roughly n^{1/ε}.  In dimensions 4 and higher, the question is wide open: we don't know any reasonable average-case assignment heuristic.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.