Date
Thu, 24 May 2012
Time
16:00 - 17:00
Location
DH 1st floor SR
Speaker
Anne Juel
Organisation
Manchester

The displacement of a liquid by an air finger is a generic two-phase flow that

underpins applications as diverse as microfluidics, thin-film coating, enhanced

oil recovery, and biomechanics of the lungs. I will present two intriguing

examples of such flows where, firstly, oscillations in the shape of propagating

bubbles are induced by a simple change in tube geometry, and secondly, flexible

vessel boundaries suppress viscous fingering instability.

1) A simple change in pore geometry can radically alter the behaviour of a

fluid displacing air finger, indicating that models based on idealized pore

geometries fail to capture key features of complex practical flows. In

particular, partial occlusion of a rectangular cross-section can force a

transition from a steadily-propagating centred finger to a state that exhibits

spatial oscillations via periodic sideways motion of the interface at a fixed

location behind the finger tip. We characterize the dynamics of the

oscillations and show that they arise from a global homoclinic connection

between the stable and unstable manifolds of a steady, symmetry-broken

solution.

2) Growth of complex dendritic fingers at the interface of air and a viscous

fluid in the narrow gap between two parallel plates is an archetypical problem

of pattern formation. We find a surprisingly effective means of suppressing

this instability by replacing one of the plates with an elastic membrane. The

resulting fluid-structure interaction fundamentally alters the interfacial

patterns that develop and considerably delays the onset of fingering. We

analyse the dependence of the instability on the parameters of the system and

present scaling arguments to explain the experimentally observed behaviour.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.