Date
Tue, 07 Feb 2012
Time
14:30 - 15:30
Location
L3
Speaker
Imre Leader (Cambridge)

If $A$ is a set of $n$ positive integers, how small can the set

$\{ x/(x,y) : x,y \in A \}$ be? Here, as usual, $(x,y)$ denotes the highest common factor of

$x$ and $y$. This elegant question was raised by Granville and Roesler, who

also reformulated it in the following way: given a set $A$ of $n$ points in

the integer grid ${\bf Z}^d$, how small can $(A-A)^+$, the projection of the difference

set of $A$ onto the positive orthant, be?

Freiman and Lev gave an example to show that (in any dimension) the size can

be as small as $n^{2/3}$ (up to a constant factor). Granville and Roesler

proved that in two dimensions this bound is correct, i.e. that the size is

always at least $n^{2/3}$, and they asked if this holds in any dimension.

After some background material, the talk will focus on recent developments.

Joint work with B\'ela Bollob\'as.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.