Date
Thu, 03 May 2012
Time
16:00 - 17:00
Location
DH 1st floor SR
Speaker
Linda Cummings
Organisation
New Jersey Institute of Technology Newark

Nematic liquid crystals (NLCs) are materials that flow like liquids, but have some crystalline features. Their molecules are typically long and thin, and tend to align locally, which imparts some elastic character to the NLC. Moreover at interfaces between the NLC and some other material (such as a rigid silicon substrate, or air) the molecules tend to have a preferred direction (so-called "surface anchoring"). This preferred behaviour at interfaces, coupled with the internal "elasticity", can give rise to complex instabilities in spreading free surface films. This talk will discuss modelling approaches to describe such flows. The models presented are capable of capturing many of the key features observed experimentally, including arrested spreading (with or without instability). Both 2D and 3D spreading scenarios will be considered, and simple ways to model nontrivial surface anchoring patterns, and "defects" within the flows will also be discussed.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.