Mon, 16 Jan 2023
16:00
N3.12

Some things about the class number formula

Håvard Damm-Johnsen
(University of Oxford)
Abstract

The Dedekind zeta function generalises the Riemann zeta
function to other number fields than the rationals. The analytic class number
formula says that the leading term of the Dedekind zeta function is a
product of invariants of the number field. I will say some things
about the class number formula, about L-functions, and about Stark's
conjecture which generalises the class number formula.

OBMS brings together mathematicians, chemists, physicists and engineers from academia and industry to discuss the latest modelling research and applications.

Our philosophy is to invite a small number of outstanding speakers spanning a range of topics from atomistic to continuum modelling, controls and beyond, giving broad and inspiring presentations and open discussions.

Prime numbers: Techniques, results and questions

Today, 4 pm, Lecture Theatre 1

Followed by a reception in the Common Room to celebrate our 2022 Fields medallist. You are all very welcome.

Photo of jJmes

Tue, 21 Feb 2023

14:00 - 15:00
L4

Hamilton decompositions of regular bipartite tournaments

Bertille Granet
(Heidelberg University)
Abstract

A regular bipartite tournament is an orientation of a complete balanced bipartite graph $K_{2n,2n}$ where every vertex has its in- and outdegree both equal to $n$. In 1981, Jackson conjectured that any regular bipartite tournament can be decomposed into Hamilton cycles. We prove this conjecture for sufficiently large $n$. Along the way, we also prove several further results, including a conjecture of Liebenau and Pehova on Hamilton decompositions of dense bipartite digraphs.

Tue, 14 Feb 2023

14:00 - 15:00
L4

Approximation of Boolean solution sets to polynomial conditions on finite prime fields

Thomas Karam
(University of Oxford)
Abstract

Let $p \ge 3$ be a prime integer. The density of a non-empty solution set of a system of affine equations $L_i(x) = b_i$, $i=1,\dots,k$ on a vector space over the field $\mathbb{F}_p$ is determined by the dimension of the linear subspace $\langle L_1,\dots,L_k \rangle$, and tends to $0$ with the dimension of that subspace. In particular, if the solution set is dense, then the system of equations contains at most boundedly many pairwise distinct linear forms. In the more general setting of systems of affine conditions $L_i(x) \in E_i$ for some strict subsets $E_i$ of $\mathbb{F}_p$ and where the solution set and its density are taken inside $S^n$ for some non-empty subset $S$ of $\mathbb{F}_p$ (such as $\{0,1\}$), we can however usually find subsets of $S^n$ with density at least $1/2$ but such that the linear subspace $\langle L_1,\dots,L_k \rangle$ has arbitrarily high dimension. We shall nonetheless establish an approximate boundedness result: if the solution set of a system of affine conditions is dense, then it contains the solution set of a system of boundedly many affine conditions and which has approximately the same density as the original solution set. Using a recent generalisation by Gowers and the speaker of a result of Green and Tao on the equidistribution of high-rank polynomials on finite prime fields we shall furthermore prove a weaker analogous result for polynomials of small degree.

Based on joint work with Timothy Gowers (College de France and University of Cambridge).

Tue, 31 Jan 2023

14:00 - 15:00
L4

Hypercontractivity on compact Lie groups, and some applications

David Ellis
(University of Bristol)
Abstract

We present two ways of obtaining hypercontractive inequalities for low-degree functions on compact Lie groups: one based on Ricci curvature bounds, the Bakry-Emery criterion and the representation theory of compact Lie groups, and another based on a (very different) probabilistic coupling approach. As applications we make progress on a question of Gowers concerning product-free subsets of the special unitary groups, and we also obtain 'mixing' inequalities for the special unitary groups, the special orthogonal groups, the spin groups and the compact symplectic groups. We expect that the latter inequalities will have applications in physics.

Based on joint work with Guy Kindler (HUJI), Noam Lifshitz (HUJI) and Dor Minzer (MIT).

Tue, 24 Jan 2023

14:00 - 15:00
L4

Asymmetric graph removal

Yuval Wigderson
(Tel Aviv University)
Abstract

The triangle removal lemma of Ruzsa and Szemerédi is a fundamental result in extremal graph theory; very roughly speaking, it says that if a graph is "far" from triangle-free, then it contains "many" triangles. Despite decades of research, there is still a lot that we don't understand about this simple statement; for example, our understanding of the quantitative dependencies is very poor.


In this talk, I will discuss asymmetric versions of the triangle removal lemma, where in some cases we can get almost optimal quantitative bounds. The proofs use a mix of ideas coming from graph theory, number theory, probabilistic combinatorics, and Ramsey theory.


Based on joint work with Lior Gishboliner and Asaf Shapira.

Tue, 17 Jan 2023

14:00 - 15:00
L4

Expansion in supercritical random subgraphs of the hypercube and its consequences

Mihyun Kang
(Graz University of Technology)
Abstract

We consider a bond percolation on the hypercube in the supercritical regime. We derive vertex-expansion properties of the giant component. As a consequence we obtain upper bounds on the diameter of the giant component and the mixing time of the lazy random walk on the giant component. This talk is based on joint work with Joshua Erde and Michael Krivelevich.

Correction: Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients.
Ryou, H Sirinukunwattana, K Aberdeen, A Grindstaff, G Stolz, B Byrne, H Harrington, H Sousos, N Godfrey, A Harrison, C Psaila, B Mead, A Rees, G Turner, G Rittscher, J Royston, D Leukemia (12 Jan 2023)

Dog holding a welcome back sign

Welcome back to Oxford, and to the Student Bulletin! 

This week's Bulletin has lots of opportunities to browse, and lots of important student news, so read on! 

Subscribe to