Skip to main content
University of Oxford logo Home

Search form

  • Log in
  • Members
  • About Us
    • Contact Us
    • Travel & Maps
    • Our Building
    • Supporting Mathematics
    • Alumni
    • History
    • Art and Oxford Mathematics
    • Equality, Diversity and Inclusion
    • News
    • Vacancies
  • Study Here
    • Undergraduate Study
    • Postgraduate Study
    • Current Students
  • Research
    • Research Groups
    • Case Studies
    • Faculty Books
  • Outreach
    • Posters
    • Oxford Mathematics Alphabet
    • Oxford Online Maths Club
    • Oxford Maths Festival
    • It All Adds Up
    • Problem Solving Matters
    • MIORPA
    • PROMYS Europe
    • Oxfordshire Maths Masterclasses
    • Outreach Information
    • Mailing List
  • People
    • Key Contacts
    • People List
    • A Global Department
    • Research Fellowship Programmes
    • Professional Services Teams
  • Events
    • Venue Hire
    • Public Lectures & Events
    • Departmental Seminars & Events
    • Special Lectures
    • Conferences
    • Summer Schools
    • Past Events
    • Info for Event Organisers & Attendees

Primary tabs

  • View
  • Contact

Dr Jaroslav Fowkes

MMath (Hons), DPhil
Status
Visiting Professor, Research Fellow, Lecturer
+44 1865 615202
Contact form
http://people.maths.ox.ac.uk/fowkes/
ORCID iD
https://orcid.org/0000-0002-8048-4572
Research groups
  • Machine Learning and Data Science
  • Numerical Analysis
Address
Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
Major / recent publications

Revenue Management:

Gaussian Processes for Unconstraining Demand 
I. Price, J. Fowkes and D. Hopman. European Journal of Operational Research, vol. 275, no. 2, pp. 621–634, 2019.

Exploratory Data Analysis:

A Subsequence Interleaving Model for Sequential Pattern Mining 
J. Fowkes and C. Sutton. KDD 2016 (18% acceptance rate).

A Bayesian Network Model for Interesting Itemsets (Supplementary Material) 
J. Fowkes and C. Sutton. PKDD 2016 (28% acceptance rate).

Machine Learning for Source Code:

Autofolding for Source Code Summarization 
J. Fowkes,  P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata and C. Sutton. IEEE Transactions on Software Engineering, , vol. 43, no. 12, pp. 1095–1109, 2017.

Parameter-Free Probabilistic API Mining across GitHub 
J. Fowkes and C. Sutton. FSE 2016 (27% acceptance rate).

TASSAL: Autofolding for Source Code Summarization 
J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata and C. Sutton. ICSE 2016 Demo Track (32% acceptance rate).

Continuous Optimization:

Approximating sparse Hessian matrices using large-scale linear least squares 
J. M. Fowkes, N. I. M. Gould and J .A. Scott. Numerical Algorithms, vol. 96, no. 4, pp. 1675–1698, 2024.

Branching and Bounding Improvements for Global Optimization Algorithms with Lipschitz Continuity Properties (Extended Paper) 
C. Cartis, J. M. Fowkes and N. I. M. Gould. Journal of Global Optimization, vol. 61, no. 3, pp. 429–457, 2015.

A Branch and Bound Algorithm for the Global Optimization of Hessian Lipschitz Continuous Functions 
J. M. Fowkes, N. I. M. Gould and C. L. Farmer. Journal of Global Optimization, vol. 56, no. 4, pp. 1791–1815, 2013.

Bayesian Numerical Analysis: Global Optimization and Other Applications 
J. M. Fowkes. DPhil Thesis, Mathematical Institute, University of Oxford, 2012.

Optimal Well Placement 
C. L. Farmer, J. M. Fowkes and N. I. M. Gould. Proceedings of the 12th European Conference on the Mathematics of Oil Recovery, 6–9th September 2010.

Prizes, awards, and scholarships

Awarded the SIAM UK prize for the best presentation by a PhD student at the 23rd Biennial Conference on Numerical Analysis, Glasgow.

Awarded the CCLRC Science Prize for Excellence in Science at the European School, Culham.

Teaching

Lecturer for B6.3 Integer Programming (MT).

Research interests

My current main interests are optimization challenges relevant to the commercial aviation sector, as well as more general algorithms that bridge the gap between optimization and machine learning, in particular: statistical pattern mining algorithms for exploratory data analysis, machine learning techniques for the analysis of program source code and Bayesian optimization. 

Facebook LinkedIn Bluesky X
TikTok Instagram YouTube
London Mathematical Society Good Practice Scheme Athena SWAN Silver Award (ECU Gender Charter) Stonewall Silver Employer 2022

© Mathematical Institute

Accessibility Statement


Privacy Policy

Cookies

sfy39587stp18