Thu, 28 Jan 2016

16:00 - 17:30
L4

Equilibrium in risk-sharing games

Kostas Kardaras
(Dept of Statistics London School of Economics)
Abstract

The large majority of risk-sharing transactions involve few agents, each of whom can heavily influence the structure and the prices of securities. This paper proposes a game where agents' strategic sets consist of all possible sharing securities and pricing kernels that are consistent with Arrow-Debreu sharing rules. First, it is shown that agents' best response problems have unique solutions, even when the underlying probability space is infinite. The risk-sharing Nash equilibrium admits a finite-dimensional characterisation and it is proved to exist for general number of agents and be unique in the two-agent game. In equilibrium, agents choose to declare beliefs on future random outcomes different from their actual probability assessments, and the risk-sharing securities are endogenously bounded, implying (amongst other things) loss of efficiency. In addition, an analysis regarding extremely risk tolerant agents indicates that they profit more from the Nash risk-sharing equilibrium as compared to the Arrow-Debreu one.
(Joint work with Michail Anthropelos)

Mon, 26 May 2008
14:15
Oxford-Man Institute

The McKean stochastic game driven by a spectrally negative Levy process

Dr Erik Baurdoux
(Dept of Statistics London School of Economics)
Abstract

The McKean stochastic game (MSG) is a two-player version of the perpetual American put option. The MSG consists of two agents and a certain payoff function of an underlying stochastic process. One agent (the seller) is looking for a strategy (stopping time) which minimises the expected pay-off, while the other agent (the buyer) tries to maximise this quantity.

For Brownian motion one can find the value of the MSG and the optimal stopping times by solving a free boundary value problem. For a Lévy process with jumps the corresponding free boundary problem is more difficult to solve directly and instead we use fluctuation theory to find the solution of the MSG driven by a Lévy process with no positive jumps. One interesting aspect is that the optimal stopping region for the minimiser "thickens" from a point to an interval in the presence of jumps. This talk is based on joint work with Andreas Kyprianou (University of Bath).

Subscribe to Dept of Statistics London School of Economics