Mon, 01 Mar 2010
15:45
Eagle House

Non-Markovian random walk and nonlinear reaction-transport equations.

Sergei Fedotov
(Manchester)
Abstract

The main aim is to incorporate the nonlinear term into non-Markovian Master equations for a continuous time random walk (CTRW) with non-exponential waiting time distributions. We derive new nonlinear evolution equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distributions. We apply these equations to the problem of front propagation in the reaction-transport systems of KPP-type.

We find an explicit expression for the speed of a propagating front in the case of subdiffusive transport.

Thu, 23 Oct 2008

11:00 - 12:00
SR1

Model completeness results for certain Pfaffian structures

Gareth Jones
(Manchester)
Abstract

I show that the expansion of the real field by a total Pfaffian chain is model complete in a language with symbols for the functions in the chain, the exponential and all real constants. In particular, the expansion of the reals by all total Pfaffian functions is model complete.

Tue, 05 Feb 2008

16:00 - 17:00
L1

Cherednik algebras, Hilbert schemes and quantum hamiltonian reduction

Toby Stafford
(Manchester)
Abstract

Cherednik algebras (always of type A in this talk) are an intriguing class of algebras that have been used to answer questions in a range of different areas, including integrable systems, combinatorics and the (non)existence of crepant resolutions. A couple of years ago Iain Gordon and I proved that they form a non-commutative deformation of the Hilbert scheme of points in the plane. This can be used to obtain detailed information about the representation theory of these algebras.

In the first part of the talk I will survey some of these results. In the second part of the talk I will discuss recent work with Gordon and Victor Ginzburg. This shows that the approach of Gordon and myself is closely related to Gan and Ginzburg's quantum Hamiltonian reduction. This again has applications to representation theory; for example it can be used to prove the equidimensionality of characteristic varieties.

Mon, 26 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Reflected Brownian motion in a wedge : sum-of-exponential stationary densities

Dr. John Moriarty
(Manchester)
Abstract

Reflected Brownian motion (RBM) in a two-dimensional wedge is a well-known stochastic process. With an appropriate drift, it is positive recurrent and has a stationary distribution, and the invariant measure is absolutely continuous with respect to Lebesgue measure. I will give necessary and sufficient conditions for the stationary density to be written as a finite sum of exponentials with linear exponents. Such densities are a natural generalisation of the stationary density of one-dimensional RBM. Using geometric ideas reminiscent of the reflection principle, I will give an explicit formula for the density in such cases, which can be written as a determinant. Joint work with Ton Dieker.

Subscribe to Manchester