Mon, 02 Mar 2020

15:45 - 16:45
L3

Mean-field Langevin dynamics and neural networks

ZHENJIE REN
(Université Paris Dauphine)
Abstract

The deep neural network has achieved impressive results in various applications, and is involved in more and more branches of science. However, there are still few theories supporting its empirical success. In particular, we miss the mathematical tool to explain the advantage of certain structures of the network, and to have quantitive error bounds. In our recent work, we used a regularised relaxed control problem to model the deep neural network.  We managed to characterise its optimal control by the invariant measure of a mean-field Langevin system, which can be approximated by the marginal laws. Through this study we understand the importance of the pooling for the deep nets, and are capable of computing an exponential convergence rate for the (stochastic) gradient descent algorithm.

Thu, 02 Feb 2017
12:00
L5

Macroscopic temperature profiles in non-equilibrium stationary states

Stefano Olla
(Université Paris Dauphine)
Abstract

Systems that have more than one conserved quantity (i.e. energy plus momentum, density etc.), can exhibit quite interesting temperature profiles in non-equilibrium stationary states. I will present some numerical experiment and mathematical result. I will also expose some other connected problems, always concerning thermal boundary conditions in hydrodynamic limits.
 

Mon, 06 Jun 2016

14:15 - 15:15
C6

Well-posedness and regularizing properties of stochastic Hamilton-Jacobi equations

PAUL GASSIAT
(Université Paris Dauphine)
Abstract

We consider fully nonlinear parabolic equations of the form $du = F(t,x,u,Du,D^2 u) dt + H(x,Du) \circ dB_t,$ which can be made sense of by the Lions-Souganidis theory of stochastic viscosity solutions. I will first recall the ideas of this theory, and will discuss more recent developments (including the use of rough path theory in this context). In the second part of my talk, I will explain how in the case where $H(x,Du)=|Du|^2$, the solution $u$ may enjoy better regularity properties than the solution to the unperturbed equation, which can be measured by (a pair of) solutions to a reflected SDE. Based on joint works with P. Friz, B. Gess, P.L. Lions and P. Souganidis.

 

Thu, 05 Nov 2015

16:00 - 17:30
L4

On multi-dimensional risk sharing problems

Guillaume Carlier
(Université Paris Dauphine)
Abstract

A well-known result of Landsberger and Meilijson says that efficient risk-sharing rules for univariate risks are characterized by a so-called comonotonicity condition. In this talk, I'll first discuss a multivariate extension of this result (joint work with R.-A. Dana and A. Galichon). Then I will discuss the restrictions (in the form of systems of nonlinear PDEs) efficient risk sharing imposes on individual consumption as a function of aggregate consumption. I'll finally give an identification result on how to recover preferences from the knowledge of the risk sharing (joint work with M. Aloqeili and I. Ekeland).

Mon, 19 Jan 2015

14:15 - 15:15
Oxford-Man Institute

'Optimal Switching in Finite Horizon under State Constraints’

Idris Kharoubbi
(Université Paris Dauphine)
Abstract

'We study an optimal switching problem with a state constraint: the controller is only allowed to choose strategies that keep the controlled diffusion in a closed domain. We prove that the value function associated to the weak formulation of this problem is the limit of the value function associated to an unconstrained switching problem with penalized coefficients, as the penalization parameter goes to infinity. This convergence allows to set a dynamic programming principle for the constrained switching problem. We then prove that the value function is a constrained viscosity solution to a system of variational inequalities (SVI for short). We finally prove that the value function is the maximal solution to this SVI. All our results are obtained without any regularity assumption on the constraint domain.’

Thu, 12 Feb 2015
16:00
L4

Discrete time approximation of HJB equations via BSDEs with nonpositive jumps

Idris Kharroubi
(Université Paris Dauphine)
Abstract
We propose a new probabilistic numerical scheme for fully nonlinear equations of Hamilton-Jacobi-Bellman (HJB) type associated to stochastic control problems, which is based on the a recent Feynman-Kac representation by means of control randomization and backward stochastic differential equation with nonpositive jumps. We study a discrete time approximation for the minimal solution to this class of BSDE when the time step goes to zero, which provides both an approximation for the value function and for an optimal control in feedback form. We obtained a convergence rate without any ellipticity condition on the controlled diffusion coefficient.
Thu, 22 May 2014

16:00 - 17:30
L4

Moral Hazard in Dynamic Risk Management

Possamaï Dylan
(Université Paris Dauphine)
Abstract

We consider a contracting problem in which a principal hires an agent to manage a risky project. When the agent chooses volatility components of the output process and the principal observes the output continuously, the principal can compute the quadratic variation of the output, but not the individual components. This leads to moral hazard with respect to the risk choices of the agent. Using a very recent theory of singular changes of measures for Ito processes, we formulate the principal-agent problem in this context, and solve it in the case of CARA preferences. In that case, the optimal contract is linear in these factors: the contractible sources of risk, including the output, the quadratic variation of the output and the cross-variations between the output and the contractible risk sources. Thus, path-dependent contracts naturally arise when there is moral hazard with respect to risk management. This is a joint work with Nizar Touzi (CMAP, Ecole Polytechnique) and Jaksa Cvitanic (Caltech).

Thu, 17 Oct 2013

14:00 - 15:00
L5

Model Selection with Piecewise Regular Gauges

Dr Gabriel Peyre
(Université Paris Dauphine)
Abstract

In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. We consider regularizations with convex positively 1-homogenous functionals (so-called gauges) which are piecewise smooth. Singularies of such functionals are crucial to force the solution to the regularization to belong to an union of linear space of low dimension. These spaces (the so-called "models") allows one to encode many priors on the data to be recovered, conforming to some notion of simplicity/low complexity. This family of priors encompasses many special instances routinely used in regularized inverse problems such as L^1, L^1-L^2 (group sparsity), nuclear norm, or the L^infty norm. The piecewise-regular requirement is flexible enough to cope with analysis-type priors that include a pre-composition with a linear operator, such as for instance the total variation and polyhedral gauges. This notion is also stable under summation of regularizers, thus enabling to handle mixed regularizations.

The main set of contributions of this talk is dedicated to assessing the theoretical recovery performance of this class of regularizers. We provide sufficient conditions that allow to provably controlling the deviation of the recovered solution from the true underlying object, as a function of the noise level. More precisely we establish two main results. The first one ensures that the solution to the inverse problem is unique and lives on the same low dimensional sub-space as the true vector to recover, with the proviso that the minimal signal to noise ratio is large enough. This extends previous results well-known for the L^1 norm [1], analysis L^1 semi-norm [2], and the nuclear norm [3] to the general class of piecewise smooth gauges. In the second result, we establish L^2 stability by showing that the L^2 distance between the recovered and true vectors is within a factor of the noise level, thus extending results that hold for coercive convex positively 1-homogenous functionals [4].

This is a joint work with S. Vaiter, C. Deledalle, M. Golbabaee and J. Fadili. For more details, see [5].

Bibliography:
[1] J.J. Fuchs, On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory, 50(6):1341-1344, 2004.
[2] S. Vaiter, G. Peyré, C. Dossal, J. Fadili, Robust Sparse Analysis Regularization, to appear in IEEE Transactions on Information Theory, 2013.
[3] F. Bach, Consistency of trace norm minimization, Journal of Machine Learning Research, 9, 1019-1048, 2008.
[4] M. Grasmair, Linear convergence rates for Tikhonov regularization with positively homogeneous functionals. Inverse Problems, 27(7):075014, 2011.
[5] S. Vaiter, M. Golbabaee, J. Fadili, G. Peyré, Model Selection with Piecewise Regular Gauges, Preprint hal-00842603, 2013

Subscribe to Université Paris Dauphine