Wed, 24 Feb 2016
15:00
L4

Pairing-based Succinct Non-interactive Arguments

Jens Groth
(University College, London)
Abstract
Zero-knowledge proofs enable a prover to convince a verifier that a statement is true without revealing anything but the truth of the statement. In recent years there has been a lot of effort in making the proofs succinct, i.e., the proof may be much smaller than the statement itself and be very easy for the verifier to check. The talk will give a general introduction to zero-knowledge proofs and a presentation of a new pairing-based succinct non-interactive argument system.
Mon, 31 Oct 2011

17:00 - 18:00
Gibson 1st Floor SR

Mathematical aspects of invisibility

Yaroslav Kurylev
(University College, London)
Abstract
We consider the mathematical theory of invisibility. We start with singular transformation which provide exact (both active and passive) invisibility. We then show how to approximate this highly anisotropic, singular material parameters with homogeneous non-singular ones. We then apply this construction to produce some unusual phenomena in quantum physics, acoustics, etc. (like invisible sensor and Schrodinger Hat potential)
Thu, 29 Apr 2010

12:30 - 13:30
Gibson 1st Floor SR

Rotational Elasticity

Dmitri Vassiliev
(University College, London)
Abstract

We consider a 3-dimensional elastic continuum whose material points

can experience no displacements, only rotations. This framework is a

special case of the Cosserat theory of elasticity. Rotations of

material points of the continuum are described mathematically by

attaching to each geometric point an orthonormal basis which gives a

field of orthonormal bases called the coframe. As the dynamical

variables (unknowns) of our theory we choose the coframe and a

density.

In the first part of the talk we write down the general dynamic

variational functional of our problem. In doing this we follow the

logic of classical linear elasticity with displacements replaced by

rotations and strain replaced by torsion. The corresponding

Euler-Lagrange equations turn out to be nonlinear, with the source

of this nonlinearity being purely geometric: unlike displacements,

rotations in 3D do not commute.

In the second part of the talk we present a class of explicit

solutions of our Euler-Lagrange equations. We call these solutions

plane waves. We identify two types of plane waves and calculate

their velocities.

In the third part of the talk we consider a particular case of our

theory when only one of the three rotational elastic moduli, that

corresponding to axial torsion, is nonzero. We examine this case in

detail and seek solutions which oscillate harmonically in time but

depend on the space coordinates in an arbitrary manner (this is a

far more general setting than with plane waves). We show [1] that

our second order nonlinear Euler-Lagrange equations are equivalent

to a pair of linear first order massless Dirac equations. The

crucial element of the proof is the observation that our Lagrangian

admits a factorisation.

[1] Olga Chervova and Dmitri Vassiliev, "The stationary Weyl

equation and Cosserat elasticity", preprint http://arxiv.org/abs/1001.4726

Tue, 15 Apr 2008
14:00
DH 2nd floor SR

Disappearing bodies and ghost vortices

Ian Eames
(University College, London)
Abstract

In many dispersed multiphase flows droplets, bubbles and particles move and disappear due to a phase change. Practical examples include fuel droplets evaporating in a hot gas, vapour bubbles condensing in subcooled liquids and ice crystals melting in water. After these `bodies' have disappeared, they leave behind a remnant `ghost' vortex as an expression of momentum conservation.

A general framework is developed to analyse how a ghost vortex is generated. A study of these processes is incomplete without a detailed discussion of the concept of momentum for unbounded flows. We show how momentum can be defined unambiguously for unbounded flows and show its connection with other expressions, particularly that of Lighthill (1986). We apply our analysis to interpret new observations of condensing vapour bubble and discuss droplet evaporation. We show that the use of integral invariants, widely applied in turbulence, introduces a new perspective to dispersed multiphase flows

Subscribe to University College, London