Thu, 31 Jan 2019

16:00 - 17:30
L3

Poroelastic propagation and pancakes: understanding why supraglacial lakes spread but Venutian lava domes stop

Dr. Jerome Neufeld
(University of Cambridge)
Abstract

Many fluid flows in natural systems are highly complex, with an often beguilingly intricate and confusing detailed structure. Yet, as with many systems, a good deal of insight can be gained by testing the consequences of simple mathematical models that capture the essential physics.  We’ll tour two such problems.  In the summer melt seasons in Greenland, lakes form on the surface of the ice which have been observed to rapidly drain.  The propagation of the meltwater in the subsurface couples the elastic deformation of the ice and, crucially, the flow of water within the deformable subglacial till.  In this case the poroelastic deformation of the till plays a subtle, but crucial, role in routing the surface meltwater which spreads indefinitely, and has implications for how we think about large-scale motion in groundwater aquifers or geological carbon storage.  In contrast, when magma erupts onto the Earth’s surface it flows before rapidly cooling and crystallising.  Using analogies from the kitchen we construct, and experimentally test, a simple model of what sets the ultimate extent of magmatic intrusions on Earth and, as it turns out, on Venus.  The results are delicious!  In both these cases, we see how a simplified mathematical analysis provides insight into large scale phenomena.

Fri, 19 Oct 2018

14:00 - 15:00
C2

Plumes in heterogeneous porous formations

Duncan Hewitt
(University of Cambridge)
Abstract

Plumes are a characteristic feature of convective flow through porous media. Their dynamics are an important part of numerous geological processes, ranging from mixing in magma chambers to the convective dissolution of sequestered carbon dioxide. In this talk, I will discuss models for the spread of convective plumes in a heterogeneous porous environment. I will focus particularly on the effect of thin, roughly horizontal, low-permeability barriers to flow, which provide a generic form of heterogeneity in geological settings, and are a particularly widespread feature of sedimentary formations. With the aid of high-resolution numerical simulations, I will explore how a plume spreads and flows in the presence of one or more of these layers, and will briefly consider the implications of these findings in physical settings.

Fri, 15 Jun 2018

12:00 - 13:00
C6

Character correspondences for symmetric and complex reflection groups.

Eugenio Giannelli
(University of Cambridge)
Abstract

Abstract: In 2016 Ayyer, Prasad and Spallone proved that the restriction to 
S_{n-1} of any odd degree irreducible character of S_n has a unique irreducible 
constituent of odd degree.
This result was later generalized by Isaacs, Navarro Olsson and Tiep.
In this talk I will survey some recent developments on this topic.

Thu, 22 Nov 2018

16:00 - 17:30
L3

Variational models and partial differential equations for mathematical imaging

Carola Schönlieb
(University of Cambridge)
Abstract

Images are a rich source of beautiful mathematical formalism and analysis. Associated mathematical problems arise in functional and non-smooth analysis, the theory and numerical analysis of partial differential equations, harmonic, stochastic and statistical analysis, and optimisation. Starting with a discussion on the intrinsic structure of images and their mathematical representation, in this talk we will learn about variational models for image analysis and their connection to partial differential equations, and go all the way to the challenges of their mathematical analysis as well as the hurdles for solving these - typically non-smooth - models computationally. The talk is furnished with applications of the introduced models to image de-noising, motion estimation and segmentation, as well as their use in biomedical image reconstruction such as it appears in magnetic resonance imaging.

Tue, 30 Apr 2019

17:00 - 18:00
L1

Julia Wolf - The Power of Randomness

Julia Wolf
(University of Cambridge)
Further Information

Far from taking us down the road of unpredictability and chaos, randomness has the power to help us solve a fascinating range of problems. Join Julia Wolf on a mathematical journey from penalty shoot-outs to internet security and patterns in the primes. 

Julia Wolf is University Lecturer in the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge.

5-6pm
Mathematical Institute
Oxford

Please email @email to register.

Watch live:
https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/wolf

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 03 May 2018

16:00 - 17:00
L6

Irreducibility of random polynomials

Péter Varjú
(University of Cambridge)
Abstract

Let $P$ be a random polynomial of degree $d$ such that the leading and constant coefficients are 1 and the rest of the coefficients are independent random variables taking the value 0 or 1 with equal probability. Odlyzko and Poonen conjectured that $P$ is irreducible with probability tending to 1 as $d$ grows.  I will talk about an on-going joint work with Emmanuel Breuillard, in which we prove that GRH implies this conjecture. The proof is based on estimates for the mixing time of random walks on $\mathbb{F}_p$, where the steps are given by the maps $x \rightarrow ax$ and $x \rightarrow ax+1$ with equal probability.

Thu, 08 Mar 2018
16:00
C5

TBA

Lawrence Barrott
(University of Cambridge)
Thu, 31 May 2018

16:00 - 17:30
L3

How long does it take to get there?

Herbert Huppert
(University of Cambridge)
Abstract

There are a huge number of nonlinear partial differential equations that do not have analytic solutions.   Often one can find similarity solutions, which reduce the number of independent variables, but still leads, generally, to a nonlinear equation.  This can, only sometimes, be solved analytically.  But always the solution is independent of the initial conditions.   What role do they play?   It is generally stated that the similarity  solution agrees with the (not determined) exact solution when (for some variable say t) obeys t >> t_1.   But what is  t_1?   How does it depend on the initial conditions?  How large must  t be for the similarity solution to be within 15, 10, 5, 1, 0.1, ….. percent of the real solution?   And how does this depend on the parameters and initial conditions of the problem?   I will explain how two such typical, but somewhat different, fundamental problems can be solved, both analytically and numerically,  and compare some of the results with small scale laboratory experiments, performed during the talk.  It will be suggested that many members of the audience could take away the ideas and apply them in their own special areas.

Thu, 17 May 2018

16:00 - 17:30
L3

Peeling and the growth of blisters

Professor John Lister
(University of Cambridge)
Abstract

The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between flow and elastic deformation on a range of length scales. 

I will illustrate the possibilities by considering theoretically and experimentally the injection and spread of viscous fluid beneath a flexible elastic lid; the injected fluid forms a blister, which spreads by peeling the lid away at the  perimeter of the blister. Among the many questions to be considered are the mechanisms for relieving the elastic analogue of the contact-line problem, whether peeling is "by bending" or "by pulling", the stability of the peeling front, and the effects of a capillary meniscus when peeling is by air injection. The result is a plethora of dynamical regimes and asymptotic scaling laws.

Tue, 31 Oct 2017

14:00 - 14:30
L5

Dual Acceleration for Nonconvex Optimisation

Matthew Geleta
(University of Cambridge)
Abstract


The phenomenon of poor algorithmic scalability is a critical problem in large-scale machine learning and data science. This has led to a resurgence in the use of first-order (Hessian-free) algorithms from classical optimisation. One major drawback is that first-order methods tend to converge extremely slowly. However, there exist techniques for efficiently accelerating them.
    
The topic of this talk is the Dual Regularisation Nonlinear Acceleration algorithm (DRNA) (Geleta, 2017) for nonconvex optimisation. Numerical studies using the CUTEst optimisation problem set show the method to accelerate several nonconvex optimisation algorithms, including quasi-Newton BFGS and steepest descent methods. DRNA compares favourably with a number of existing accelerators in these studies.
    
DRNA extends to the nonconvex setting a recent acceleration algorithm due to Scieur et al. (Advances in Neural Information Processing Systems 29, 2016). We have proven theorems relating DRNA to the Kylov subspace method GMRES, as well as to Anderson's acceleration method and family of multi-secant quasi-Newton methods.
 

Subscribe to University of Cambridge