Thu, 01 Mar 2018

16:00 - 17:30
L3

Bacterial flows

Eric Lauga
(University of Cambridge)
Abstract

Most motile bacteria are equipped with multiple helical flagella, slender appendages whose rotation in viscous fluids allow the cells to self-propel. We highlight in this talk two consequences of hydrodynamics for bacteria. We first show how the swimming of cells with multiple flagella is enabled by an elastohydrodynamic instability. We next demonstrate how interactions between flagellar filaments mediated by the fluid govern the ability of the cells to reorient. 

Mon, 13 Nov 2017

17:00 - 18:00
L1

Allan McRobie - The Seduction of Curves: The Lines of Beauty That Connect Mathematics, Art and The Nude

Allan McRobie
(University of Cambridge)
Abstract

There is a deep connection between the stability of oil rigs, the bending of light during gravitational lensing and the act of life drawing. To understand each, we must understand how we view curved surfaces. We are familiar with the language of straight-line geometry – of squares, rectangles, hexagons - but curves also have a language – of folds, cusps and swallowtails - that few of us know.

Allan will explain how the key to understanding the language of curves is René Thom’s Catastrophe Theory, and how – remarkably – the best place to learn that language is perhaps in the life drawing class. Sharing its title with Allan's new book, the talk will wander gently across mathematics, physics, engineering, biology and art, but always with a focus on curves.

Warning: this talk contains nudity.

Allan McRobie is Reader in Engineering, University of Cambridge

Please email @email to register

Wed, 01 Nov 2017

17:00 - 18:00
L1

Julia Gog - Maths v Disease

Julia Gog
(University of Cambridge)
Abstract

Can mathematics really help us in our fight against infectious disease? Join Julia Gog as we explore some exciting current research areas where mathematics is being used to study pandemics, viruses and everything in between, with a particular focus on influenza.

Julia Gog is Professor of Mathematical Biology, University of Cambridge and David N Moore Fellow at Queens’ College, Cambridge.

Please email: @email to regsiter

Mon, 22 May 2017

14:15 - 15:15
L3

Convergence of percolation on uniform quadrangulations

JASON MILLER
(University of Cambridge)
Abstract

Let Q be a uniformly random quadrangulation with simple boundary decorated by a critical (p=3/4) face percolation configuration.  We prove that the chordal percolation exploration path on Q between two marked boundary edges converges in the scaling limit to SLE(6) on the Brownian disk (equivalently, a Liouville quantum gravity surface).  The topology of convergence is the Gromov-Hausdorff-Prokhorov-uniform topology, the natural analog of the Gromov-Hausdorff topology for curve-decorated metric measure spaces.  Our method of proof is robust and, up to certain technical steps, extends to any percolation model on a random planar map which can be explored via peeling.  Joint work with E. Gwynne.

Mon, 24 Apr 2017

14:15 - 15:15
L3

The harmonic measure on the boundary of Hastings-Levitov clusters

VITTORIA SILVESTRI
(University of Cambridge)
Abstract

The Hastings-Levitov models describe the growth of random sets (or clusters) in the complex plane as the result of iterated composition of random conformal maps. The correlations between these maps are determined by the harmonic measure density profile on the boundary of the clusters. In this talk I will focus on the simplest case, that of i.i.d. conformal maps, and obtain a description of the local fluctuations of the harmonic measure density around its deterministic limit, showing that these are Gaussian. This is joint work with James Norris.

Wed, 01 Mar 2017
16:00
C1

Treelike structures in boundaries of hyperbolic groups

Benjamin Barrett
(University of Cambridge)
Abstract

Inspired by the theory of JSJ decomposition for 3-manifolds, one can define the JSJ decomposition of a group as a maximal canonical way of cutting it up into simpler pieces using amalgamated products and HNN extensions. If the group in question has some sort of non-positive curvature property then one can define a boundary at infinity for the group, which captures its large scale geometry. The JSJ decomposition of the group is then reflected in the treelike structure of the boundary. In this talk I will discuss this connection in the case of hyperbolic groups and explain some of the ideas used in its proof by Brian Bowditch.

Wed, 28 Jun 2017

17:00 - 18:15
L1

Sanjeev Goyal - The Law of the Few

Sanjeev Goyal
(University of Cambridge)
Abstract

Oxford Mathematics Public Lectures

The Law of the Few - Sanjeev Goyal

The study of networks offers a fruitful approach to understanding human behaviour. Sanjeev Goyal is one of its pioneers. In this lecture Sanjeev presents a puzzle:

In social communities, the vast majority of individuals get their information from a very small subset of the group – the influencers, connectors, and opinion leaders. But empirical research suggests that there are only minor differences between the influencers and the others. Using mathematical modelling of individual activity and networking and experiments with human subjects, Sanjeev helps explain the puzzle and the economic trade-offs it contains.

Professor Sanjeev Goyal FBA is the Chair of the Economics Faculty at the University of Cambridge and was the founding Director of the Cambridge-INET Institute.

28 June 2017, 5.00-6.00pm, Lecture Theatre 1, Mathematical Institute Oxford.

Please email @email to register

Tue, 29 Nov 2016
14:30
L6

Decomposing the Complete r-Graph

Imre Leader
(University of Cambridge)
Abstract

The Graham-Pollak theorem states that to decompose the complete graph $K_n$ into complete bipartite subgraphs we need at least $n-1$ of them. What
happens for hypergraphs? In other words, suppose that we wish to decompose the complete $r$-graph on $n$ vertices into complete $r$-partite $r$-graphs; how many do we need?

In this talk we will report on recent progress on this problem. This is joint work with Luka Milicevic and Ta Sheng Tan.

Mon, 10 Oct 2016

15:45 - 16:45
L3

Small-time fluctuations for sub-Riemannian diffusion loops

KAREN HABERMANN
(University of Cambridge)
Abstract

We study the small-time fluctuations for diffusion processes which are conditioned by their initial and final positions and whose diffusivity has a sub-Riemannian structure. In the case where the endpoints agree, we discuss the convergence of the suitably rescaled fluctuations to a limiting diffusion loop, which is equal in law to the loop we obtain by taking the limiting process of the unconditioned rescaled diffusion processes and condition it to return to its starting point. The generator of the unconditioned limiting rescaled diffusion process can be described in terms of the original generator.

Wed, 18 Jan 2017

17:00 - 18:00
L1

Inaugural Roger Penrose Lecture - Stephen Hawking CANCELLED

Stephen Hawking
(University of Cambridge)
Abstract

In recognition of a lifetime's contribution across the mathematical sciences, we are initiating a series of annual Public Lectures in honour of Roger Penrose. The first lecture will be given by his long-time collaborator and friend Stephen Hawking.

Registration will open at 10am on 4 January 2017. Please email:

@email from that time only.

When registering please give your name and affiliation - your position, department & organisation/institution as appropriate. Or if you are a member of the General Public, please say so. Places will be allocated on a first come, first served basis with only one place per person. We will only be able to respond if you have a place or are on the waiting list.

We will be podcasting the lecture live. More details to follow.

Subscribe to University of Cambridge