Thu, 28 Feb 2008

10:00 - 11:00
Gibson 1st Floor SR

The $\Gamma$-limit of a finite-strain Cosserat model for asymptotically thin domains versus a formal dimensional reduction

Patrizo Neff
(University of Essen & T.U. Darmstadt)
Abstract

We are concerned with the derivation of the $\Gamma$-limit to a three-dimensional geometrically exact

Cosserat model as the relative thickness $h>0$ of a flat domain tends to zero. The Cosserat bulk model involves

already exact rotations as a second independent field and this model is meant to describe defective elastic crystals liable to fracture under shear.

It is shown that the $\Gamma$-limit based on a natural scaling assumption

consists of a membrane like energy contribution and a homogenized transverse shear energy both scaling with $h$,

augmented by an additional curvature stiffness due to the underlying Cosserat bulk formulation, also scaling with $h$.

No specific bending term appears in the dimensional homogenization process. The formulation

exhibits an internal length scale $L_c$ which survives the homogenization process.

%

A major technical difficulty, which we encounter in applying the $\Gamma$-convergence arguments,

is to establish equi-coercivity of the sequence of

functionals as the relative thickness $h$ tends to zero. Usually, equi-coercivity follows from a local coerciveness assumption.

While the three-dimensional problem is well-posed for the Cosserat couple modulus $\mu_c\ge 0$, equi-coercivity forces us

to assume a strictly positive Cosserat couple modulus $\mu_c>0$. The $\Gamma$-limit model determines the

midsurface deformation $m\in H^{1,2}(\omega,\R^3)$. For the case of zero Cosserat couple modulus $\mu_c=0$

we obtain an estimate of the $\Gamma-\liminf$ and $\Gamma-\limsup$, without equi-coercivity which is then strenghtened to a $\Gamma$-convergence result for zero Cosserat couple modulus. The classical linear

Reissner-Mindlin model is "almost" the linearization of the $\Gamma$-limit for $\mu_c=0$

apart from a stabilizing shear energy term.

Mon, 25 Feb 2008
16:00
L3

Gradient-plasticity: modelling and analysis.

Patrizio Neff
(University of Essen & T.U. Darmstadt)
Abstract
We discuss a model of finite strain gradient plasticity including phenomenological Prager type linear kinematical hardening and nonlocal kinematical hardening due to dislocation interaction. Based on the multiplicative decomposition a thermodynamically admissible flow rule for Fp is described involving as plastic gradient Curl Fp. The formulation is covariant w.r.t. superposed rigid rotations of the reference, intermediate and spatial configuration but the model is not spin-free due to the nonlocal dislocation interaction and cannot be reduced to a dependenceon the plastic metric Cp=FpT Fp.
The linearization leads to a thermodynamically admissible model of infinitesimal plasticity involving only the Curl of the non-symmetric plastic distortion p. Linearized spatial and material covariance under constant infinitesimal rotations is satisfied.
Uniqueness of strong solutions of the infinitesimal model is obtained if two non-classical boundary conditions on the plastic distortion p are introduced: dtp.τ=0 on the microscopically hard boundary ΓD⊂∂Ω and [Curlp].τ=0 on the microscopically free boundary ∂Ω\ΓD, where τ are the tangential vectors at the boundary ∂Ω. Moreover, I show that a weak reformulation of the infinitesimal model allows for a global in-time solution of the corresponding rate-independent initial boundary value problem. The method of choice are a formulation as a quasivariational inequality with symmetric and coercive bilinear form, following the abstract framework proposed by Reddy. Use is made of new Hilbert-space suitable for dislocation density dependent plasticity.
Subscribe to University of Essen & T.U. Darmstadt