Mon, 09 Nov 2015

16:00 - 17:00
L5

Instance optimality for the maximum strategy

Lars Diening
(University of Osnabruck)
Abstract

We study the adaptive finite element approximation of the Dirichlet problem $-\Delta u = f$ with zero boundary values using newest vertex bisection. Our approach is based on the minimization of the corresponding Dirichlet energy. We show that the maximums strategy attains every energy level with a number of degrees of freedom, which is proportional to the optimal number. As a consequence we achieve instance optimality of the error. This is a joint work with Christian Kreuzer (Bochum) and Rob Stevenson (Amsterdam).

Thu, 15 Oct 2009

14:00 - 15:00
3WS SR

Sparsity, $\ell_1$ Minimization, and the Geometric Separation Problem

Prof. Gitta Kutyniok
(University of Osnabruck)
Abstract

During the last two years, sparsity has become a key concept in various areas

of applied mathematics, computer science, and electrical engineering. Sparsity

methodologies explore the fundamental fact that many types of data/signals can

be represented by only a few non-vanishing coefficients when choosing a suitable

basis or, more generally, a frame. If signals possess such a sparse representation,

they can in general be recovered from few measurements using $\ell_1$ minimization

techniques.

One application of this novel methodology is the geometric separation of data,

which is composed of two (or more) geometrically distinct constituents -- for

instance, pointlike and curvelike structures in astronomical imaging of galaxies.

Although it seems impossible to extract those components -- as there are two

unknowns for every datum -- suggestive empirical results using sparsity

considerations have already been obtained.

In this talk we will first give an introduction into the concept of sparse

representations and sparse recovery. Then we will develop a very general

theoretical approach to the problem of geometric separation based on these

methodologies by introducing novel ideas such as geometric clustering of

coefficients. Finally, we will apply our results to the situation of separation

of pointlike and curvelike structures in astronomical imaging of galaxies,

where a deliberately overcomplete representation made of wavelets (suited

to pointlike structures) and curvelets/shearlets (suited to curvelike

structures) will be chosen. The decomposition principle is to minimize the

$\ell_1$ norm of the frame coefficients. Our theoretical results, which

are based on microlocal analysis considerations, show that at all sufficiently

fine scales, nearly-perfect separation is indeed achieved.

This is joint work with David Donoho (Stanford University).

Subscribe to University of Osnabruck