Mon, 20 Nov 2017

14:15 - 15:15
L3

SLE and Rough Paths Theory

VLAD MARGARINT
(University of Oxford)
Abstract

In this talk, I am going to report on some on-going research at the interface between Rough Paths Theory and Schramm-Loewner evolutions (SLE). In this project, we try to adapt techniques from Rough Differential Equations to the study of the Loewner Differential Equation. The main ideas concern the restart of the backward Loewner differential equation from the singularity in the upper half plane. I am going to describe some general tools that we developed in the last months that lead to a better understanding of the dynamics in the closed upper half plane under the backward Loewner flow.
Joint work with Prof. Dmitry Belyaev and Prof. Terry Lyons

Mon, 06 Nov 2017

15:45 - 16:45
L3

Karhunen Loeve expansions in regularity structures.

SINA NEJAD
(University of Oxford)
Abstract

We consider L^2-approximations of white noise within the framework of regularity structures. Possible applications include support theorems for SPDEs driven by degenerate noises and numerics. Joint work with Ilya Chevyrev, Peter Friz and Tom Klose. 

Mon, 16 Oct 2017

15:45 - 16:45
L3

A signature-based machine learning model for bipolar disorder and borderline personality disorder

IMANOL PEREZ
(University of Oxford)
Abstract

The signature of a path has many properties that make it an excellent feature to be used in machine learning. We exploit this properties to analyse a stream of data that arises from a psychiatric study whose objective is to analyse bipolar and borderline personality disorders. We build a machine learning model based on signatures that tries to answer two clinically relevant questions, based on observations of their reported state over a short period of time: is it possible to predict if a person is healthy, has bipolar disorder or has borderline personality disorder? And given a person or borderline personality disorder, it is possible to predict his or her future mood? Signatures proved to be very effective to tackle these two problems.

Mon, 09 Oct 2017

14:15 - 15:15
L3

Inverting the signature of a path

JIAWEI CHANG
(University of Oxford)
Abstract

Inverting the signature of a path with ideas from linear algebra with implementations.

Wed, 07 Feb 2018

17:00 - 18:00
L1

Michael Bonsall - Scaling the Maths of Life

Michael Bonsall
(University of Oxford)
Abstract

In this talk Michael Bonsall will explore how we can use mathematics to link between scales of organisation in biology. He will delve in to developmental biology, ecology and neurosciences, all illustrated and explored with real life examples, simple games and, of course, some neat maths.

Michael Bonsall is Professor of Mathematical Biology in Oxford.

7 February 2018, 5pm-6pm, Mathematical Institute, Oxford

Please email @email to register or watch online: https://livestream.com/oxuni/bonsall

Wed, 14 Jun 2017

11:30 - 12:30
N3.12

Finiteness properties and subdirect products of groups

Claudio Llosa Isenrich
(University of Oxford)
Abstract

In my talk I will give a basic introduction to the finiteness properties of groups and their relation to subgroups of direct products of groups. I will explain the relation between such subgroups and fibre products of groups, and then proceed with a discussion of the n-(n+1)-(n+2)-Conjecture and the Virtual Surjections Conjecture. While both conjectures are still open in general, they are known to hold in special cases. I will explain how these results can be applied to prove that there are groups with arbitrary (non-)finiteness properties.

Wed, 17 May 2017

11:30 - 12:30
N3.12

Nearly exponential functions of order 4

David Hume
(University of Oxford)
Abstract

For every $\epsilon>0$ does there exist some $n\in\mathbb{N}$ and a bijection $f:\mathbb{Z}_n\to\mathbb{Z}_n$ such that $f(x+1)=2f(x)$ for at least $(1-\epsilon)n$ elements of $\mathbb{Z}_n$ and $f(f(f(f(x))))=(x)$ for all $x\in\mathbb{Z}_n$? I will discuss this question and its relation to an important open problem in the theory of countable discrete groups.

Wed, 10 May 2017

11:30 - 12:30
N3.12

Insertion Algorithms and Littlewood-Richardson Rules

Adam Keilthy
(University of Oxford)
Abstract

The Robin-Schensted-Knuth insertion algorithm provides a bijection between non-negative integer matrices and pairs of semistandard Young tableau. However, by relaxing the conditions on the correspondence, it allows us to define the Poirer-Reutenauer bialgebra, which exactly describes the algebra of symmetric functions viewed as generated by the Schur polynomials. This gives an interesting combinatorial decomposition of symmetric products of Schur polynomials, called a Littlewood Richardson rule, which we will discuss. We will then power through as many generalisations as I have time for: Hecke insertion and stable Grothendieck polynomials, shifted insertion and Schur P-functions, and shifted Hecke insertion and weak shifted stable Grothendieck polynomials

Wed, 03 May 2017

11:30 - 12:30
N3.12

Deficiencies of groups

Giles Gardam
(University of Oxford)
Abstract

Deficiency is a measure of how complicated the presentations of a particular group need to be; it is defined as the maximum of the number of generators minus the number of relators (over all finite presentations of the group). This talk will introduce the basics of deficiency, give a deft example of Swan which illustrates why our understanding of deficiency is deficient, and conclude with some new examples that defy this defeatism: finite $p$-groups can have any deficiency you could (reasonably) wish for.

Fri, 12 May 2017

10:00 - 11:00
N3.12

Controlling faithful prime ideals in Iwasawa algebras.

Adam Jones
(University of Oxford)
Abstract

 

For a prime number p, we will consider completed group algebras, or Iwasawa algebras, of the form kG, for G a complete p-valued group of finite rank, k a field of characteristic p. Classifying the ideal structure of Iwasawa algebras has been an ongoing project within non-commutative algebra and representation theory, and we will discuss ideas related to this topic based on previous work and try to extend it. An important concept in studying ideals of group algebras is the notion of controlling ideals, where we say a closed subgroup H of G controls a right ideal I of kG if I is generated by a subset of kH. It was proved by Konstantin Ardakov in 2012 that for G nilpotent, every faithful prime ideal of kG is controlled by the centre of G, and it follows that the prime spectrum of kG can be realised as the disjoint union of commutative strata. I am hoping to extend this to a more general case, perhaps to when G is solvable. A key step in the proof is to consider a faithful prime ideal P in kG, and an automorphism of G, trivial mod centre, that fixes P. By considering the Mahler expansion of the automorphism, and approximating the coefficients, we can examine sequences of bounded k-linear functions of kG, and study their convergence. If we find that they converge to an appropriate quantized divided power, we can find proper open subgroups of G that control P. I have extended this notion to larger classes of automorphisms, not necessarily trivial mod centre, using which this proof can be replicated, and in some cases extended to when G is abelian-by-procyclic. I will give some examples, for G with small rank, for which these ideas yield results.

Subscribe to University of Oxford