Thu, 04 Mar 2010

14:00 - 15:00
3WS SR

Split Bregman methods for L1-Regularized Problems with Applications to Image Processing

Mr. Thomas Goldstein
(University of California, Los Angeles)
Abstract

This talk will introduce L1-regularized optimization problems that arise in image processing, and numerical methods for their solution. In particular, we will focus on methods of the split-Bregman type, which very efficiently solve large scale problems without regularization or time stepping. Applications include image

denoising, segmentation, non-local filters, and compressed sensing.

Thu, 25 Feb 2010

14:00 - 15:00
3WS SR

Numerical Aspects of Optimization in Finance

Prof. Ekkehard Sachs
(University of Trier)
Abstract

There is a widespread use of mathematical tools in finance and its

importance has grown over the last two decades. In this talk we

concentrate on optimization problems in finance, in particular on

numerical aspects. In this talk, we put emphasis on the mathematical problems and aspects, whereas all the applications are connected to the pricing of derivatives and are the

outcome of a cooperation with an international finance institution.

As one example, we take an in-depth look at the problem of hedging

barrier options. We review approaches from the literature and illustrate

advantages and shortcomings. Then we rephrase the problem as an

optimization problem and point out that it leads to a semi-infinite

programming problem. We give numerical results and put them in relation

to known results from other approaches. As an extension, we consider the

robustness of this approach, since it is known that the optimality is

lost, if the market data change too much. To avoid this effect, one can

formulate a robust version of the hedging problem, again by the use of

semi-infinite programming. The numerical results presented illustrate

the robustness of this approach and its advantages.

As a further aspect, we address the calibration of models being used in

finance through optimization. This may lead to PDE-constrained

optimization problems and their solution through SQP-type or

interior-point methods. An important issue in this context are

preconditioning techniques, like preconditioning of KKT systems, a very

active research area. Another aspect is the preconditioning aspect

through the use of implicit volatilities. We also take a look at the

numerical effects of non-smooth data for certain models in derivative

pricing. Finally, we discuss how to speed up the optimization for

calibration problems by using reduced order models.

Thu, 04 Feb 2010

14:00 - 15:00
3WS SR

Determination of the Basin of Attraction in Dynamical Systems using Meshless Collocation

Dr Peter Giesl
(University of Sussex)
Abstract

In dynamical systems given by an ODE, one is interested in the basin

of attraction of invariant sets, such as equilibria or periodic

orbits. The basin of attraction consists of solutions which converge

towards the invariant set. To determine the basin of attraction, one

can use a solution of a certain linear PDE which can be approximated

by meshless collocation.

The basin of attraction of an equilibrium can be determined through

sublevel sets of a Lyapunov function, i.e. a scalar-valued function

which is decreasing along solutions of the dynamical system. One

method to construct such a Lyapunov function is to solve a certain

linear PDE approximately using Meshless Collocation. Error estimates

ensure that the approximation is a Lyapunov function.

The basin of attraction of a periodic orbit can be analysed by Borg’s

criterion measuring the time evolution of the distance between

adjacent trajectories with respect to a certain Riemannian metric.

The sufficiency and necessity of this criterion will be discussed,

and methods how to compute a suitable Riemannian metric using

Meshless Collocation will be presented in this talk.

Thu, 28 Jan 2010

14:00 - 15:00
3WS SR

Preconditioning Stochastic Finite Element Matrices

Dr. Catherine Powell
(University of Manchester)
Abstract

In the last few years, there has been renewed interest in stochastic

finite element methods (SFEMs), which facilitate the approximation

of statistics of solutions to PDEs with random data. SFEMs based on

sampling, such as stochastic collocation schemes, lead to decoupled

problems requiring only deterministic solvers. SFEMs based on

Galerkin approximation satisfy an optimality condition but require

the solution of a single linear system of equations that couples

deterministic and stochastic degrees of freedom. This is regarded as

a serious bottleneck in computations and the difficulty is even more

pronounced when we attempt to solve systems of PDEs with

random data via stochastic mixed FEMs.

In this talk, we give an overview of solution strategies for the

saddle-point systems that arise when the mixed form of the Darcy

flow problem, with correlated random coefficients, is discretised

via stochastic Galerkin and stochastic collocation techniques. For

the stochastic Galerkin approach, the systems are orders of

magnitude larger than those arising for deterministic problems. We

report on fast solvers and preconditioners based on multigrid, which

have proved successful for deterministic problems. In particular, we

examine their robustness with respect to the random diffusion

coefficients, which can be either a linear or non-linear function of

a finite set of random parameters with a prescribed probability

distribution.

Thu, 18 Feb 2010

14:00 - 15:00
3WS SR

Saddle point problems in liquid crystal modelling

Dr. Alison Ramage
(University of Strathclyde)
Abstract

Saddle-point problems occur frequently in liquid crystal modelling. For example, they arise whenever Lagrange multipliers are used for the pointwise-unit-vector constraints in director modelling, or in both general director and order tensor models when an electric field is present that stems from a constant voltage. Furthermore, in a director model with associated constraints and Lagrange multipliers, together with a coupled electric-field interaction, a particular ''double'' saddle-point structure arises. This talk will focus on a simple example of this type and discuss appropriate numerical solution schemes.

This is joint work with Eugene C. Gartland, Jr., Department of Mathematical Sciences, Kent State University.

Thu, 14 Jan 2010

14:00 - 15:00
3WS SR

Golub-Kahan Iterative Bidiagonalization and Revealing Noise in the Data

Prof. Zdenek Strakos
(Academy of Sciences of the Czech Republic)
Abstract

Regularization techniques based on the Golub-Kahan iterative bidiagonalization belong among popular approaches for solving large discrete ill-posed problems. First, the original problem is projected onto a lower dimensional subspace using the bidiagonalization algorithm, which by itself represents a form of regularization by projection. The projected problem, however, inherits a part of the ill-posedness of the original problem, and therefore some form of inner regularization must be applied. Stopping criteria for the whole process are then based on the regularization of the projected (small) problem.

We consider an ill-posed problem with a noisy right-hand side (observation vector), where the noise level is unknown. We show how the information from the Golub-Kahan iterative bidiagonalization can be used for estimating the noise level. Such information can be useful for constructing efficient stopping criteria in solving ill-posed problems.

This is joint work by Iveta Hn\v{e}tynkov\'{a}, Martin Ple\v{s}inger, and Zden\v{e}k Strako\v{s} (Faculty of Mathematics and Physics, Charles University, and Institute of Computer Science, Academy of Sciences, Prague)

Thu, 03 Dec 2009

14:00 - 15:00
3WS SR

Rational Approximations to the Complex Error Function

Prof. Andre Weideman
(University of Stellenbosch)
Abstract

We consider rational approximations to the Faddeeva or plasma dispersion function, defined

as

$w(z) = e^{-z^{2}} \mbox{erfc} (-iz)$.

With many important applications in physics, good software for

computing the function reliably everywhere in the complex plane is required. In this talk

we shall derive rational approximations to $w(z)$ via quadrature, M\"{o}bius transformations, and best approximation. The various approximations are compared with regard to speed of convergence, numerical stability, and ease of generation of the coefficients of the formula.

In addition, we give preference to methods for which a single expression yields uniformly

high accuracy in the entire complex plane, as well as being able to reproduce exactly the

asymptotic behaviour

$w(z) \sim i/(\sqrt{\pi} z), z \rightarrow \infty$

(in an appropriate sector).

This is Joint work with: Stephan Gessner, St\'efan van der Walt

Thu, 19 Nov 2009

14:00 - 15:00
3WS SR

Molecular Dynamics Simulations and why they are interesting for Numerical Analysts

Dr. Pedro Gonnet
(ETH Zurich and Oxford University)
Abstract

Molecular Dynamics Simulations are a tool to study the behaviour

of atomic-scale systems. The simulations themselves solve the

equations of motion for hundreds to millions of particles over

thousands to billions of time steps. Due to the size of the

problems studied, such simulations are usually carried out on

large clusters or special-purpose hardware.

At a first glance, there is nothing much of interest for a

Numerical Analyst: the equations of motion are simple, the

integrators are of low order and the computational aspects seem

to focus on hardware or ever larger and faster computer

clusters.

The field, however, having been ploughed mainly by domain

scientists (e.g. Chemists, Biologists, Material Scientists) and

a few Computer Scientists, is a goldmine for interesting

computational problems which have been solved either badly or

not at all. These problems, although domain specific, require

sufficient mathematical and computational skill to make finding

a good solution potentially interesting for Numerical Analysts.

The proper solution of such problems can result in speed-ups

beyond what can be achieved by pushing the envelope on Moore's

Law.

In this talk I will present three examples where problems

interesting to Numerical Analysts arise. For the first two

problems, Constraint Resolution Algorithms and Interpolated

Potential Functions, I will present some of my own results. For

the third problem, using interpolations to efficiently compute

long-range potentials, I will only present some observations and

ideas, as this will be the main focus of my research in Oxford

and therefore no results are available yet.

Thu, 05 Nov 2009

14:00 - 15:00
3WS SR

On rational interpolation

Dr. Joris van Deun
(University of Antwerp and University of Oxford)
Thu, 29 Oct 2009

14:00 - 15:00
3WS SR

Is the Outer Solar System Chaotic?

Dr. Wayne Hayes
(UC Irvine and Imperial College London)
Abstract

The stability of our Solar System has been debated since Newton devised

the laws of gravitation to explain planetary motion. Newton himself

doubted the long-term stability of the Solar System, and the question

has remained unanswered despite centuries of intense study by

generations of illustrious names such as Laplace, Langrange, Gauss, and

Poincare. Finally, in the 1990s, with the advent of computers fast

enough to accurately integrate the equations of motion of the planets

for billions of years, the question has finally been settled: for the

next 5 billion years, and barring interlopers, the shapes of the

planetary orbits will remain roughly as they are now. This is called

"practical stability": none of the known planets will collide with each

other, fall into the Sun, or be ejected from the Solar System, for the

next 5 billion years.

Although the Solar System is now known to be practically stable, it may

still be "chaotic". This means that we may---or may not---be able

precisely to predict the positions of the planets within their orbits,

for the next 5 billion years. The precise positions of the planets

effects the tilt of each planet's axis, and so can have a measurable

effect on the Earth's climate. Although the inner Solar System is

almost certainly chaotic, for the past 15 years, there has been

some debate about whether the outer Solar System exhibits chaos or not.

In particular, when performing numerical integrations of the orbits of

the outer planets, some astronomers observe chaos, and some do not. This

is particularly disturbing since it is known that inaccurate integration

can inject chaos into a numerical solution whose exact solution is known

to be stable.

In this talk I will demonstrate how I closed that 15-year debate on

chaos in the outer solar system by performing the most carefully justified

high precision integrations of the orbits of the outer planets that has

yet been done. The answer surprised even the astronomical community,

and was published in _Nature Physics_.

I will also show lots of pretty pictures demonstrating the fractal nature

of the boundary between chaos and regularity in the outer Solar System.

Subscribe to 3WS SR