Wed, 05 Nov 2025

16:00 - 17:00
L6

Improving acylindrical actions on trees

Will Cohen
(Cambridge)
Abstract
Loosely speaking, an action of a group on a tree is acylindrical if long enough paths must have small stabilisers. Groups admitting such actions form a natural subclass of acylindrically hyperbolic groups, and interesting an feature of acylindrical actions on trees is that many interesting properties are inherited from their vertex stabilisers. In order to make use of this, it is important to have some degree of control over these stabilisers. For example, can we ask for these stabilisers to be finitely generated, or even malnormal (or finite-height)? Even stronger, if our group is hyperbolic, can we ask for the stabilisers to be quasiconvex?
 
In this talk, I will introduce acylindrical actions and some stronger and related concepts, and discuss a method known as the Dunwoody—Sageev resolution that we can use to move between these concepts and provide positive answers to the above questions in some cases.
Tue, 21 Oct 2025
15:30
L4

Vector fields on intrinsic mirrors

Mark Gross
(Cambridge)
Abstract
Siebert and I gave a general construction of mirror partners to log
Calabi-Yau pairs, we called these mirror partners "intrinsic mirrors". This talk
is about a small part of a larger project with Pomerleano and Siebert aimed
at understanding this construction at a deeper level. I will explain how to
construct vector fields on the mirror using enumerative geometry of the original
log Calabi-Yau pair.
Tue, 21 Oct 2025
14:00
L6

Profinite Rigidity, Noetherian Domains, and Solvable Groups

Julian Wykowski
(Cambridge)
Abstract

The question of profinite rigidity asks whether the isomorphism type of a group Γ can be recovered entirely from its finite quotients. In this talk, I will introduce the study of profinite rigidity in a different setting: the category of modules over a Noetherian domain Λ. I will explore properties of Λ-modules that can be detected in finite quotients and present two profinite rigidity theorems: one for free Λ-modules under a weak homological assumption on Λ, and another for all Λ-modules in the case when Λ is a Dedekind domain. Returning to groups, I will explain how these algebraic results yield new answers to profinite rigidity for certain classes of solvable groups. Time permitting, I will conclude with a sketch of future directions and ongoing collaborations that push these ideas further.

Fri, 28 Feb 2025
10:30
N4.01

Carrollian Fluids in 1+1 Dimensions: Mathematical Theory

Grigalius Taujanskas
(Cambridge)
Abstract

Due to connections to flat space holography, Carrollian geometry, physics and fluid dynamics have received an explosion of interest over the last two decades. In the Carrollian limit of vanishing speed of light c, relativistic fluids reduce to a set of PDEs called the Carrollian fluid equations. Although in general these equations are not well understood, and their PDE theory does not appear to have been studied, in dimensions 1+1 it turns out that there is a duality with the Galilean compressible Euler equations in 1+1 dimensions inherited from the isomorphism of the Carrollian (c to 0) and Galilean (c to infinity) contractions of the Poincar\'e algebra. Under this duality time and space are interchanged, leading to different dynamics in evolution. I will discuss recent work with N. Athanasiou (Thessaloniki), M. Petropoulos (Paris) and S. Schulz (Pisa) in which we establish the first rigorous PDE results for these equations by introducing a notion of Carrollian isentropy and studying the equations using Lax’s method and compensated compactness. In particular, I will explain that there is global existence in rough norms but finite-time blow-up in smoother norms.

Fri, 28 Feb 2025
12:00
L5

Extreme horizons and Hitchin equations

Maciej Dunajski
(Cambridge)
Abstract
We establish the rigidity theorem for black hole extremal horizons, and prove that their compact cross-sections must admit a Killing vector field. The intrinsic Riemannian geometry of extremal horizons admits a quasi-Einstein structure. We shall discuss another class of such structures  corresponding to projective metrizability, where global results can be obtained. In this case the quasi-Einstein structure is governed by the Hitchin equations.
 

 

Tue, 25 Feb 2025
15:30
L4

The Logarithmic Hilbert Scheme

Patrick Kennedy-Hunt
(Cambridge)
Abstract

I am interested in studying moduli spaces and associated enumerative invariants via degeneration techniques. Logarithmic geometry is a natural language for constructing and studying relevant moduli spaces. In this talk I  will explain the logarithmic Hilbert (or more generally Quot) scheme and outline how the construction helps study enumerative invariants associated to Hilbert/Quot schemes- a story we now understand well. Time permitting, I will discuss some challenges and key insights for studying moduli of stable vector bundles/ sheaves via similar techniques - a theory whose details are still being worked out. 

Thu, 24 Oct 2024
14:30
L6

COW SEMINAR: Homological mirror symmetry for K3 surfaces

Ailsa Keating
(Cambridge)
Abstract

Joint work with Paul Hacking (U Mass Amherst). We first explain how to 
prove homological mirror symmetry for a maximal normal crossing 
Calabi-Yau surface Y with split mixed Hodge structure. This includes the 
case when Y is a type III K3 surface, in which case this is used to 
prove a conjecture of Lekili-Ueda. We then explain how to build on this 
to prove an HMS statement for K3 surfaces. On the symplectic side, we 
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic 
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be 
accessible to audience members with a wide range of mirror symmetric 
backgrounds.

Mon, 18 Nov 2024
14:15
L4

Gromov-Witten theory in degenerations

Dhruv Ranganathan
(Cambridge)
Abstract

I will discuss recent and ongoing work with Davesh Maulik that explains how Gromov-Witten invariants behave under simple normal crossings degenerations. The main outcome of the study is that if a projective manifold $X$ undergoes a simple normal crossings degeneration, the Gromov-Witten theory of $X$ is determined, via universal formulas, by the Gromov-Witten theory of the strata of the degeneration. Although the proof proceeds via logarithmic geometry, the statement involves only traditional Gromov-Witten cycles. Indeed, one consequence is a folklore conjecture of Abramovich-Wise, that logarithmic Gromov-Witten theory “does not contain new invariants”. I will also discuss applications of this to a conjecture of Levine and Pandharipande, concerning the relationship between Gromov-Witten theory and the cohomology of the moduli space of curves.

Fri, 07 Jun 2024
16:00
L1

Departmental Colloquium: Fluid flow and elastic flexure – mathematical modelling of the transient response of ice sheets in a changing climate (Jerome Neufield) CANCELLED

Jerome Neufield
(Cambridge)
Abstract

CANCELLED DUE TO ILLNESS

The response of the Greenland and Antarctic ice sheets to a changing climate is one of the largest sources of uncertainty in future sea level predictions.  The behaviour of the subglacial environment, where ice meets hard rock or soft sediment, is a key determinant in the flux of ice towards the ocean, and hence the loss of ice over time.  Predicting how ice sheets respond on a range of timescales brings together mathematical models of the elastic and viscous response of the ice, subglacial sediment and water and is a rich playground where the simplified models of the contact between ice, rock and ocean can shed light on very large scale questions.  In this talk we’ll see how these simplified models can make sense of a variety of field and laboratory data in order to understand the dynamical phenomena controlling the transient response of large ice sheets.

Subscribe to Cambridge