Thu, 24 Oct 2024
14:30
L6

COW SEMINAR: Homological mirror symmetry for K3 surfaces

Ailsa Keating
(Cambridge)
Abstract

Joint work with Paul Hacking (U Mass Amherst). We first explain how to 
prove homological mirror symmetry for a maximal normal crossing 
Calabi-Yau surface Y with split mixed Hodge structure. This includes the 
case when Y is a type III K3 surface, in which case this is used to 
prove a conjecture of Lekili-Ueda. We then explain how to build on this 
to prove an HMS statement for K3 surfaces. On the symplectic side, we 
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic 
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be 
accessible to audience members with a wide range of mirror symmetric 
backgrounds.

Mon, 18 Nov 2024
14:15
L4

Gromov-Witten theory in degenerations

Dhruv Ranganathan
(Cambridge)
Abstract

I will discuss recent and ongoing work with Davesh Maulik that explains how Gromov-Witten invariants behave under simple normal crossings degenerations. The main outcome of the study is that if a projective manifold $X$ undergoes a simple normal crossings degeneration, the Gromov-Witten theory of $X$ is determined, via universal formulas, by the Gromov-Witten theory of the strata of the degeneration. Although the proof proceeds via logarithmic geometry, the statement involves only traditional Gromov-Witten cycles. Indeed, one consequence is a folklore conjecture of Abramovich-Wise, that logarithmic Gromov-Witten theory “does not contain new invariants”. I will also discuss applications of this to a conjecture of Levine and Pandharipande, concerning the relationship between Gromov-Witten theory and the cohomology of the moduli space of curves.

Fri, 07 Jun 2024
16:00
L1

Departmental Colloquium: Fluid flow and elastic flexure – mathematical modelling of the transient response of ice sheets in a changing climate (Jerome Neufield) CANCELLED

Jerome Neufield
(Cambridge)
Abstract

CANCELLED DUE TO ILLNESS

The response of the Greenland and Antarctic ice sheets to a changing climate is one of the largest sources of uncertainty in future sea level predictions.  The behaviour of the subglacial environment, where ice meets hard rock or soft sediment, is a key determinant in the flux of ice towards the ocean, and hence the loss of ice over time.  Predicting how ice sheets respond on a range of timescales brings together mathematical models of the elastic and viscous response of the ice, subglacial sediment and water and is a rich playground where the simplified models of the contact between ice, rock and ocean can shed light on very large scale questions.  In this talk we’ll see how these simplified models can make sense of a variety of field and laboratory data in order to understand the dynamical phenomena controlling the transient response of large ice sheets.

Mon, 27 May 2024
14:15
L4

Weinstein manifolds without arboreal skeleta

Abigail Ward
(Cambridge)
Abstract

The relationship between the topological or homotopy-invariant properties of a symplectic manifold X and the set of possible immersed or embedded Lagrangian submanifolds of X is rich and mostly mysterious.  In 2020, D. Alvarez-Gavela, Y. Eliashberg, and D. Nadler proved that any Weinstein manifold (e.g. an affine variety) admitting a Lagrangian plane field retracts onto a Lagrangian submanifold with arboreal singularities (a certain class of singularities which can be described combinatorially). I will discuss work in progress with D. Alvarez-Gavela and T. Large investigating the other direction, in which we prove a partial converse to the AGEN result and show that most Weinstein manifolds do not admit such skeleta. This suggests that the Floer-theoretic invariants of some well-known open symplectic manifolds may be more complicated than expected.

Mon, 06 Nov 2023
14:15
L4

The New $\mu$-Invariants: Infinite-Dimensional Morse Indices and New Invariants of $G_2$-Manifolds

Laurence Mayther
(Cambridge)
Abstract

There are two main methods of constructing compact manifolds with holonomy $G_2$, viz. resolution of singularities (first applied by Joyce) and twisted connect sum (first applied by Kovalev).  In the second case, there is a known invariant (the $\overline{\nu}$-invariant, introduced by Crowley–Goette–Nordström) which can, in many cases, be used to distinguish between different examples.  This invariant, however, has limitations; in particular, it cannot be computed on the $G_2$-manifolds constructed by resolution of singularities.

 

In this talk, I shall begin by discussing the notion of a $G_2$-manifold and the $\overline{\nu}$-invariant and its limitations.  In the context of this, I shall then introduce two new invariants of $G_2$-manifolds, termed $\mu$-invariants, and explain why these promise to overcome these limitations, in particular being well-suited to, and computable on, Joyce's examples of $G_2$-manifolds.  These invariants are related to $\eta$- and $\zeta$-invariants and should be regarded as the Morse indices of a $G_2$-manifold when it is viewed as a critical point of certain Hitchin functionals.  Time permitting, I shall explain how to prove a closed formula for the invariants on the orbifolds used in Joyce's construction, using Epstein $\zeta$-functions.

Mon, 01 May 2023
13:00
L1

Keeping matter in the loop in dS_3 quantum gravity

Alejandra Castro
(Cambridge)
Abstract

In this talk I will discuss a novel mechanism  that couples matter fields to three-dimensional de Sitter quantum gravity. This construction is based on the Chern-Simons formulation of three-dimensional Euclidean gravity, and it centers on a collection of Wilson loops winding around Euclidean de Sitter space. We coin this object a Wilson spool.  To construct the spool, we build novel representations of su(2). To evaluate the spool, we adapt and exploit several known exact results in Chern-Simons theory. Our proposal correctly reproduces the one-loop determinant of a free massive scalar field on S^3 as G_N->0. Moreover, allowing for quantum metric fluctuations, it can be systematically evaluated to any order in perturbation theory.   

Mon, 06 Mar 2023
13:00
L1

Bounds on quantum evolution complexity via lattice cryptography

Marine De Clerck
(Cambridge)
Abstract

I will present results from arXiv:2202.13924, where we studied the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators. The notion of complexity of interest to us will be Nielsen’s complexity applied to the time-dependent evolution operator of the quantum systems. I will review Nielsen’s complexity, discuss the difficulties associated with this definition and introduce a simplified approach which appears to retain non-trivial information about the integrable properties of the dynamical systems.

Fri, 02 Dec 2022

16:00 - 17:00
L1

Strong cosmic censorship versus Λ

Mihalis Dafermos
(Cambridge)
Abstract

The strong cosmic censorship conjecture is a fundamental open problem in classical general relativity, first put forth by Roger Penrose in the early 70s. This is essentially the question of whether general relativity is a deterministic theory. Perhaps the most exciting arena where the validity of the conjecture is challenged is the interior of rotating black holes, and there has been a lot of work in the past 50 years in identifying mechanisms ensuring that at least some formulation of the conjecture be true. It turns out that when a nonzero cosmological constant Λ is added to the Einstein equations, these underlying mechanisms change in an unexpected way, and the validity of the conjecture depends on a detailed understanding of subtle aspects of black hole scattering theory, surprisingly involving, in the case of negative Λ, some number theory. Does strong cosmic censorship survive the challenge of non-zero Λ? This talk will try to address this Question!

Tue, 22 Nov 2022

14:00 - 14:30
L3

Regularization by inexact Krylov methods with applications to blind deblurring

Malena Sabate Landman
(Cambridge)
Abstract

In this talk I will present a new class of algorithms for separable nonlinear inverse problems based on inexact Krylov methods. In particular, I will focus in semi-blind deblurring applications. In this setting, inexactness stems from the uncertainty in the parameters defining the blur, which are computed throughout the iterations. After giving a brief overview of the theoretical properties of these methods, as well as strategies to monitor the amount of inexactness that can be tolerated, the performance of the algorithms will be shown through numerical examples. This is joint work with Silvia Gazzola (University of Bath).

Mon, 13 Jun 2022
14:15
L5

Open FJRW theory

Mark Gross
(Cambridge)
Abstract

I will describe joint work with Tyler Kelly and Ran Tessler. FJRW (Fan-Jarvis-Ruan-Witten) theory is an enumerative theory of quasi-homogeneous singularities, or alternatively, of Landau-Ginzburg models. It associates to a potential W:C^n -> C given by a quasi-homogeneous polynomial moduli spaces of (orbi-)curves of some genus and marked points along with some extra structure, and these moduli spaces carry virtual fundamental classes as constructed by Fan-Jarvis-Ruan. Here we specialize to the case W=x^r+y^s and construct an analogous enumerative theory for disks. We show that these open invariants provide perturbations of the potential W in such a way that mirror symmetry becomes manifest. Further, these invariants are dependent on certain choices of boundary conditions, but satisfy a beautiful wall-crossing formalism.

Subscribe to Cambridge