Thu, 06 May 2021

12:00 - 13:30
Virtual

Bio-Inspired Noise Control

Lorna Ayton
(Cambridge)
Abstract

Noise is generated in an aerodynamic setting when flow turbulence encounters a structural edge, such as at the sharp trailing edge of an aerofoil. The generation of this noise is unavoidable, however this talk addresses various ways in which it may be mitigated through altering the design of the edge. The alterations are inspired by natural silent fliers: owls. A short review of how trailing-edge noise is modelled will be given, followed by a discussion of two independent adaptations; serrations, and porosity. The mathematical impacts of the adaptations to the basic trailing-edge model will be presented, along with the physical implications they have on noise generation and control.

Fri, 12 Mar 2021
16:00
Virtual

Boundaries, Factorisation & Mirror Duality

Daniel Zhang
(Cambridge)
Abstract

I will review recent work on N=(2,2) boundary conditions of 3d
N=4 theories which mimic isolated massive vacua at infinity. Subsets of
local operators supported on these boundary conditions form lowest
weight Verma modules over the quantised bulk Higgs and Coulomb branch
chiral rings. The equivariant supersymmetric Casimir energy is shown to
encode the boundary ’t Hooft anomaly, and plays the role of lowest
weights in these modules. I will focus on a key observable associated to
these boundary conditions; the hemisphere partition function, and apply
them to the holomorphic factorisation of closed 3-manifold partition
functions and indices. This yields new “IR formulae” for partition
functions on closed 3-manifolds in terms of Verma characters. I will
also discuss ongoing work on connections to enumerative geometry, and
the construction of elliptic stable envelopes of Aganagic and Okounkov,
in particular their physical manifestation via mirror duality
interfaces.

This talk is based on 2010.09741 and ongoing work with Mathew Bullimore
and Samuel Crew.

Fri, 26 Feb 2021
16:00
Virtual

Fermionic CFTs

Philip Boyle Smith
(Cambridge)
Abstract

There has been a recent uptick in interest in fermionic CFTs. These mildly generalise the usual notion of CFT to allow dependence on a background spin structure. I will discuss how this generalisation manifests itself in the symmetries, anomalies, and boundary conditions of the theory, using the series of unitary Virasoro minimal models as an example.

Thu, 11 Feb 2021

12:00 - 13:00
Virtual

Peristalsis, beading and hexagons: three short stories about elastic instabilities in soft solids

John Biggins
(Cambridge)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

This talk will be three short stories on the general theme of elastic
instabilities in soft solids. First I will discuss the inflation of a
cylindrical cavity through a bulk soft solid, and show that such a
channel ultimately becomes unstable to a finite wavelength peristaltic
undulation. Secondly, I will introduce the elastic Rayleigh Plateau
instability, and explain that it is simply 1-D phase separation, much
like the inflationary instability of a cylindrical party balloon. I will
then construct a universal near-critical analytic solution for such 1-D
elastic instabilities, that is strongly reminiscent of the
Ginzberg-Landau theory of magnetism. Thirdly, and finally, I will
discuss pattern formation in layer-substrate buckling under equi-biaxial
compression, and argue, on symmetry grounds, that such buckling will
inevitably produce patterns of hexagonal dents near threshold.

Tue, 02 Mar 2021
15:30
Virtual

The uniform spanning tree in 4 dimensions

Perla Sousi
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A uniform spanning tree of $\mathbb{Z}^4$ can be thought of as the "uniform measure" on trees of $\mathbb{Z}^4$. The past of 0 in the uniform spanning tree is the finite component that is disconnected from infinity when 0 is deleted from the tree. We establish the logarithmic corrections to the probabilities that the past contains a path of length $n$, that it has volume at least $n$ and that it reaches the boundary of the box of side length $n$ around 0. Dimension 4 is the upper critical dimension for this model in the sense that in higher dimensions it exhibits "mean-field" critical behaviour. An important part of our proof is the study of the Newtonian capacity of a loop erased random walk in 4 dimensions. This is joint work with Tom Hutchcroft.

Tue, 19 Jan 2021
14:30
Virtual

A subspace theorem for manifolds

Emmanuel Breuillard
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The Schmidt subspace theorem is a far-reaching generalization of the Thue-Siegel-Roth theorem in diophantine approximation. In this talk I will give an interpretation of Schmidt's subspace theorem in terms of the dynamics of diagonal flows on homogeneous spaces and describe how the exceptional subspaces arise from certain rational Schubert varieties associated to the family of linear forms through the notion of Harder-Narasimhan filtration and an associated slope formalism. This geometric understanding opens the way to a natural generalization of Schmidt's theorem to the setting of diophantine approximation on submanifolds of $GL_d$, which is our main result. In turn this allows us to recover and generalize the main results of Kleinbock and Margulis regarding diophantine exponents of submanifolds. I will also mention an application to diophantine approximation on Lie groups. Joint work with Nicolas de Saxcé.

Tue, 10 Nov 2020
15:30
Virtual

Power-law bounds for critical long-range percolation

Tom Hutchcroft
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In long-range percolation on $\mathbb{Z}^d$, each potential edge $\{x,y\}$ is included independently at random with probability roughly $\beta\|x-y\|-d-\alpha$, where $\alpha > 0$ controls how long-range the model is and $\beta > 0$ is an intensity parameter. The smaller $\alpha$ is, the easier it is for very long edges to appear. We are normally interested in fixing $\alpha$ and studying the phase transition that occurs as $\beta$ is increased and an infinite cluster emerges. Perhaps surprisingly, the phase transition for long-range percolation is much better understood than that of nearest neighbour percolation, at least when $\alpha$ is small: It is a theorem of Noam Berger that if $\alpha < d$ then the phase transition is continuous, meaning that there are no infinite clusters at the critical value of $\beta$. (Proving the analogous result for nearest neighbour percolation is a notorious open problem!) In my talk I will describe a new, quantitative proof of Berger's theorem that yields power-law upper bounds on the distribution of the cluster of the origin at criticality.
    As a part of this proof, I will describe a new universal inequality stating that on any graph, the maximum size of a percolation cluster is of the same order as its median with high probability. This inequality can also be used to give streamlined new proofs of various classical results on e.g. Erdős-Rényi random graphs, which I will hopefully have time to talk a little bit about also.

Tue, 03 Nov 2020
14:00
Virtual

Combinatorics from the zeros of polynomials

Julian Sahasrabudhe
(Cambridge)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Let $X$ be a random variable, taking values in $\{1,…,n\}$, with standard deviation $\sigma$ and let $f_X$ be its probability generating function. Pemantle conjectured that if $\sigma$ is large and $f_X$ has no roots close to 1 in the complex plane then $X$ must approximate a normal distribution. In this talk, I will discuss a complete resolution of Pemantle's conjecture. As an application, we resolve a conjecture of Ghosh, Liggett and Pemantle by proving a multivariate central limit theorem for, so called, strong Rayleigh distributions. I will also discuss how these sorts of results shed light on random variables that arise naturally in combinatorial settings. This talk is based on joint work with Marcus Michelen.

Mon, 01 Jun 2020
14:15
Virtual

Homological mirror symmetry for log Calabi-Yau surfaces

Ailsa Keating
(Cambridge)
Abstract

Given a log Calabi-Yau surface Y with maximal boundary D, I'll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I'll explain how to relate this to the total space of the SYZ fibration predicted by Gross--Hacking--Keel, and, time permitting, explain ties with earlier work of Auroux--Katzarkov--Orlov and Abouzaid. Joint work with Paul Hacking.

Tue, 25 Feb 2020
14:00
L6

Coordinate Deletion

Eero Räty
(Cambridge)
Abstract

For a family $A$ in $\{0,...,k\}^n$, its deletion shadow is the set obtained from $A$ by deleting from any of its vectors one coordinate. Given the size of $A$, how should we choose $A$ to minimise its deletion shadow? And what happens if instead we may delete only a coordinate that is zero? We discuss these problems, and give an exact solution to the second problem.

Subscribe to Cambridge