Mon, 02 Nov 2009

12:00 - 13:00
L3

Dynamical Vacuum Selection and Supersymmetry Breaking in String Theory

Jock McOrist
(Cambridge)
Abstract
Intersecting brane models in string theory have proven a useful tool for studying the dynamics of quantum field theories. I will describe how certain brane models may be used to shed light on the phenomenon of supersymmetry breaking and vacuum selection in a cosmological context.
Tue, 24 Nov 2009

15:45 - 16:45
L3

Constant scalar curvature orbifold metrics and stability of orbifolds through embeddings in weighted projective spaces

Julius Ross
(Cambridge)
Abstract

There is a conjectural relationship due to Yau-Tian-Donaldson between stability of projective manifolds and the existence of canonical Kahler metrics (e.g. Kahler-Einstein metrics). Embedding the projective manifold in a large projective space gives, on one hand, a Geometric Invariant Theory stability problem (by changing coordinates on the projective space) and, on the other, a notion of balanced metric which can be used to approximate the canonical Kahler metric in question. I shall discuss joint work with Richard Thomas that extends this framework to orbifolds with cyclic quotient singularities using embeddings in weighted projective space, and examples that show how several obstructions to constant scalar curvature orbifold metrics can be interpreted in terms of stability.

Mon, 22 Jun 2009

12:00 - 13:00
L3

Hidden symmetries and higher-dimensional rotating black holes

Dr D. Kubiznak
(Cambridge)
Abstract

The 4D rotating black hole described by the Kerr geometry possesses many of what was called by Chandrasekhar "miraculous" properties. Most of them can be related to the existence of a fundamental hidden symmetry called the principal conformal Killing-Yano (PCKY) tensor. In my talk I shall demonstrate that, in this context, four dimensions are not exceptional and that the (spherical horizon topology) higher-dimensional rotating black holes are very similar to their four-dimensional cousins. Namely, I shall present the most general spacetime admitting the PCKY tensor and show that is possesses the following properties: 1) it is of the algebraic type D,  2) it allows a separation of variables for the Hamilton-Jacobi, Klein-Gordon, Dirac, gravitational, and stationary string equations, 3) the geodesic motion in such a spacetime is completely integrable, 4) when the Einstein equations with the cosmological constant are imposed the metric becomes the Kerr-NUT-(A)dS spacetime. Some of these properties remain valid even when one includes the electromagnetic field.

Mon, 01 Jun 2009

12:00 - 13:00
L3

Berry Phase and Supersymmetry

David Tong
(Cambridge)
Abstract
Abstract: I will give an introduction to the phenomenon of non-Abelian Berry phase. This process, which describes the holonomy of degenerate quantum states as parameters are varied, is governed by a non-Abelian gauge connection. I will explain why this set of ideas is particularly natural in supersymmetric quantum mechanics and will show that the connection is governed by well known equations of mathematical physics such as the Hitchin equation, the Bogomolnyi equation and generalizations.
Tue, 02 Jun 2009

14:30 - 15:30
L3

Approximate groups

Ben Green
(Cambridge)
Abstract

Let $A$ be a finite set in some ambient group. We say that $A$ is a $K$-approximate group if $A$ is symmetric and if the set $A.A$ (the set of all $xy$, where $x$, $y$ lie in $A$) is covered by $K$ translates of $A$. I will illustrate this notion by example, and will go on to discuss progress on the "rough classification" of approximate groups in various settings: abelian groups, nilpotent groups and matrix groups of fixed dimension. Joint work with E. Breuillard.

Tue, 23 Jun 2009

15:45 - 16:45
L3

Homological Mirror Symmetry for the 4-torus

Ivan Smith
(Cambridge)
Abstract

I will describe joint work with Mohammed Abouzaid, in which we complete the proof of homological mirror symmetry for the standard four-torus and consider various applications. A key tool is the recently-developed holomorphic quilt theory of Mau-Wehrheim-Woodward.

Subscribe to Cambridge