Past PDE CDT Lunchtime Seminar

8 March 2018
12:00
Marcel Ortgiese
Abstract

We consider the  symbiotic branching model, which describes a spatial population consisting of two types in terms of a coupled system of stochastic PDEs. One particularly important special case is Kimura's stepping stone model in evolutionary biology. Our main focus is a description of the interfaces between the types in the large scale limit of the system. As a new tool we will introduce a moment duality, which also holds for the limiting model. This also has implications for a classification of entrance laws of annihilating Brownian motions.

  • PDE CDT Lunchtime Seminar
7 March 2018
14:00
Katarína Bellová
Abstract

For energy functionals composed of competing short- and long-range interactions, minimizers are often conjectured to form essentially periodic patterns on some intermediate lengthscale. However,  not many detailed structural results or proofs of periodicity are known in dimensions larger than 1. We study a functional composed of  the attractive, local interfacial energy of charges concentrated on a hyperplane and the energy of the electric field generated by these charges in the full space, which can be interpreted as a repulsive, non-local functional of the charges. We follow the approach of Alberti-Choksi-Otto and prove that the energy of minimizers of this functional is uniformly distributed  on cubes intersecting the hyperplane, which are sufficiently large with respect to the intrinsic lengthscale.

This is a joint work with A. Julia and F. Otto.

  • PDE CDT Lunchtime Seminar
2 March 2018
12:00
Siran Li
Abstract

In this talk we discuss the recent proof for the existence of $C^{1,1}$ isometric immersions of several classes of negatively curved surfaces into $\R^3$, including the Lobachevsky plane, metrics of helicoid type and a one-parameter family of perturbations of the Enneper surface. Our method, following Chen--Slemrod--Wang and Cao--Huang--Wang, is to transform the Gauss--Codazzi equations into a system of hyperbolic balance laws, and prove the existence of weak solutions by finding the invariant regions. In addition, we provide further characterisation of the $C^{1,1}$ isometrically immersed generalised helicoids/catenoids established in the literature.

  • PDE CDT Lunchtime Seminar
1 March 2018
12:00
Bogdan Raita
Abstract

Many problems arising in Physics can be posed as minimisation of energy functionals under linear partial differential constraints. For example, a prototypical example in the Calculus of Variations is given by functionals defined on curl-free fields, i.e., gradients. Most work done subject to more general constraints met significant difficulty due to the lack of associated potentials. We show that under the constant rank assumption, which holds true of almost all examples of constraints investigated in connection with lower-semicontinuity, linear constraints admit a potential in frequency space. As a consequence, the notion of A-quasiconvexity, which involves testing with periodic fields leading to difficulties in establishing sufficiency for weak sequential lower semi-continuity, can be tested against compactly supported fields. We will indicate how this can simplify the general framework.

  • PDE CDT Lunchtime Seminar
28 February 2018
12:00
Siran Li
Abstract

We present some recent results on the regularity criteria for weak solutions to the incompressible Navier--Stokes equations (NSE) in 3 dimensions. By the work of Constantin--Fefferman, it is known that the alignment of vorticity directions is crucial to the regularity of NSE in $\R^3$.  In this talk we show a boundary regularity theorem for NSE on curvilinear domains with oblique derivative boundary conditions. As an application, the boundary regularity of incompressible flows on balls, cylinders and half-spaces with Navier boundary condition is established, provided that the vorticity is coherently aligned up to the boundary. The effects of  vorticity alignment on the $L^q$, $1<q<\infty$ norm of the vorticity will also be discussed.

  • PDE CDT Lunchtime Seminar
22 February 2018
12:00
Epifanio Virga
Abstract

When nematic liquid crystal droplets are produced in the form or tori (or such is the shapes of confining cavities), they may be called toroidal nematics, for short. When subject to degenerate planar anchoring on the boundary of a torus, the nematic director acquires a natural equilibrium configuration within the torus, irrespective of the values of Frank's elastic constants. That is the pure bend arrangement whose integral lines run along the parallels of all inner deflated tori. This lecture is concerned with the stability of such a universal equilibrium configuration. Whenever its stability is lost, new equilibrium configurations arise in pairs, the members of which are symmetric and exhibit opposite chirality. Previous work has shown that a rescaled saddle-splay constant may be held responsible for such a chiral symmetry breaking. We shall show that that is not the only possible instability mechanism and, perhaps more importantly, we shall attempt to describe the qualitative properties of the equilibrium nematic textures that prevail when the chiral symmetry is broken.

  • PDE CDT Lunchtime Seminar
15 February 2018
12:00
Michele Coti Zelati
Abstract

The basic mathematical models that describe the behavior of fluid flows date back to the eighteenth century, and yet many phenomena observed in experiments are far from being well understood from a theoretical viewpoint. For instance, especially challenging is the study of fundamental stability mechanisms when weak dissipative forces (generated, for example, by molecular friction) interact with advection processes, such as mixing and stirring. The goal of this talk is to have an overview on recent results on a variety of aspects related to hydrodynamic stability, such as the stability of vortices and laminar flows, the enhancement of dissipative force via mixing, and the statistical description of turbulent flows.

  • PDE CDT Lunchtime Seminar
8 February 2018
15:00
Abstract

The Boltzmann equation is a well-studied PDE that describes the statistical evolution of a dilute gas of spherical particles. However, much less is known — both from the physical and mathematical viewpoints — about the Boltzmann equation for non-spherical particles. In this talk, we present some new results on the non-existence and non-uniqueness of weak solutions to the initial-boundary value problem for N non-spherical particles which have importance for the Boltzmann equation.

We present work which was done jointly with L. Saint-Raymond (ENS Lyon), and also with P. Palffy-Muhoray (Kent State), E. Virga (Pavia) and X. Zheng (Kent State).

  • PDE CDT Lunchtime Seminar
1 February 2018
12:00
Michele Palladino
Abstract

In this talk, we propose a model describing the growth of tree stems and vine, taking into account also the presence of external obstacles. The system evolution is described by an integral differential equation which becomes discontinuous when the stem hits the obstacle. The stem feels the obstacle reaction not just at the tip, but along the whole stem. This fact represents one of the main challenges to overcome, since it produces a cone of possible reactions which is not normal with respect to the obstacle. However, using the geometric structure of the problem and optimal control tools, we are able to prove existence and uniqueness of the solution for the integral differential equation under natural assumptions on the initial data.

  • PDE CDT Lunchtime Seminar
25 January 2018
12:00
Grzegorz Karch
Abstract


Recent results on viscous conservation laws with nonlocal flux will be presented. Such models contain, as a particular example, the celebrated parabolic-elliptic Keller-Segel model of chemotaxis. Here, global-in-time solutions are constructed under (nearly) optimal assumptions on the size of radial initial data. Moreover, criteria for blowup of solutions in terms of their local concerntariotions will be derived.

  • PDE CDT Lunchtime Seminar

Pages