# Past Algebra Seminar

We present a new, more conceptual proof of our result that, when a finite group acts on a polynomial ring, the regularity of the ring of invariants is at most zero, and hence one can write down bounds on the degrees of the generators and relations. This new proof considers the action of the group on the Cech complex and looks at when it splits over the group algebra. It also applies to a more general class of rings than just polynomial ones.

I describe recent work with Pyber, Short and Szabo in which we study the `width' of a finite simple group. Given a group G and a subset A of G, the `width of G with respect to A' - w(G,A) - is the smallest number k such that G can be written as the product of k conjugates of A. If G is finite and simple, and A is a set of size at least 2, then w(G,A) is well-defined; what is more Liebeck, Nikolov and Shalev have conjectured that in this situation there exists an absolute constant c such that w(G,A)\leq c log|G|/log|A|.

I will present a partial proof of this conjecture as well as describing some interesting, and unexpected, connections between this work and classical additive combinatorics. In particular the notion of a normal K-approximate group will be introduced.

There is a well-acknowledged analogy between mapping class

groups and lattices in higher rank groups. I will discuss to which

extent does Margulis's superrigidity hold for mapping class groups:

examples, very partial results and questions.

We prove that the rank gradient vanishes for mapping class groups, Aut(Fn) for all n, Out(Fn), n > 2 and any Artin group whose underlying graph is connected. We compute the rank gradient and verify that it is equal to the first L2-Betti number for some classes of Coxeter groups.