Forthcoming events in this series


Tue, 06 Nov 2012

15:45 - 16:45
SR1

Enumeration of singular curves with tangency conditions

Yu-Jong Tzeng
(Harvard)
Abstract

How many nodal degree d plane curves are tangent to a given line? The celebrated Caporaso-Harris recursion formula gives a complete answer for any number of nodes, degrees, and all possible tangency conditions. In this talk, I will report my recent work on the generalization of the above problem to count singular curves with given tangency condition to a fixed smooth divisor on general surfaces. I will relate the enumeration to tautological integrals on Hilbert schemes of points and show the numbers of curves in question are given by universal polynomials. As a result, we can obtain infinitely many new formulas for nodal curves and understand the asymptotic behavior for all singular curves with any tangency conditions.

Tue, 30 Oct 2012

15:45 - 16:45
SR1

Sub-varieties and Descent

Oren Ben-Bassat
(Oxford and Haifa)
Abstract

Let $X$ be a variety and $Z$ be a sub-variety. Can one glue vector bundles on $X-Z$ with vector bundles on some small neighborhood of $Z$? We survey two recent results on the process of gluing a vector bundle on the complement of a sub-variety with a vector bundle on some 'small' neighborhood of the sub-variety. This is joint work. The first with M. Temkin and is about gluing categories of coherent sheaves over the category of coherent sheaves on a Berkovich analytic space. The second with J. Block and is about gluing dg enhancements of the derived category of coherent sheaves.

Tue, 23 Oct 2012

15:45 - 16:45
SR1

Birational geometry of moduli of sheaves on K3's via Bridgeland stability

Arend Bayer
(Edinburgh)
Abstract

I will explain recent results with Emanuele Macrì, in which we systematically study the birational geometry of moduli of sheaves on K3's via wall-crossing for

Bridgeland stability conditions. In particular, we obtain descriptions of their nef cones via the Mukai lattice of the K3, their moveable cones, their divisorial contractions, and obtain counter-examples to various conjectures in the literature. We also give a proof of the Lagrangian fibration conjecture (due to

Hassett-Tschinkel/Huybrechts/Sawon) via wall-crossing.

Tue, 16 Oct 2012

15:45 - 16:45
L3

Reduced classes and curve counting on surfaces

Martijn Kool
(Imperial College London)
Abstract

Counting nodal curves in linear systems $|L|$ on smooth projective surfaces $S$ is a problem with a long history. The G\"ottsche conjecture, now proved by several people, states that these counts are universal and only depend on $c_1(L)^2$, $c_1(L)\cdot c_1(S)$, $c_1(S)^2$ and $c_2(S)$. We present a quite general definition of reduced Gromov-Witten and stable pair invariants on S. The reduced stable pair theory is entirely computable. Moreover, we prove that certain reduced Gromov-Witten and stable pair invariants with many point insertions coincide and are both equal to the nodal curve counts appearing in the Göttsche conjecture. This can be seen as version of the MNOP conjecture for the canonical bundle $K_S$. This is joint work with R. P. Thomas.

Thu, 11 Oct 2012

12:00 - 13:00
Gibson Grd floor SR

Hochschild-Witt complex

Dmitry Kaledin
(Moscow)
Abstract

The "de Rham-Witt complex" of Deligne and Illusie is a functorial complex of sheaves $W^*(X)$ on a smooth algebraic variety $X$ over a finite field, computing the cristalline cohomology of $X$. I am going to present a non-commutative generalization of this: even for a non-commutative ring $A$, one can define a functorial "Hochschild-Witt complex" with homology $WHH^*(A)$; if $A$ is commutative, then $WHH^i(A)=W^i(X)$, $X = Spec A$ (this is analogous to the isomorphism $HH^i(A)=H^i(X)$ discovered by Hochschild, Kostant and Rosenberg). Moreover, the construction of the Hochschild-Witt complex is actually simpler than the Deligne-Illusie construction, and it allows to clarify the structure of the de Rham-Witt complex.

Tue, 09 Oct 2012

14:00 - 15:00
SR1

Donaldson-Thomas theory of toric CY 3-folds I

Zheng Hua
(Kansas State)
Abstract

I will explain an approach to study DT theory of toric CY 3-folds using $L_\infty$ algebras. Based on the construction of strong exceptional collection of line bundles on Fano toric stack of dimension two, we realize any bounded families of sheaves on local surfaces support on zero section as critical sets of the Chern-Simons functions. As a consequence of this construction, several interesting properties of DT invariants on local surfaces can be checked.

Tue, 02 Oct 2012

14:00 - 15:00
SR1

$W$-algebras and moduli spaces of sheaves on $A^2$ I

Olivier Schiffmann
(Jussieu)
Abstract

Motivated by a conjecture of Alday, Gaiotto and Tachikawa (AGT

conjecture), we construct an action of

a suitable $W$-algebra on the equivariant cohomology of the moduli

space $M_r$ of rank r instantons on $A^2$ (i.e.

on the moduli space of rank $r$ torsion free sheaves on $P^2$,

trivialized at the line at infinity). We show that

the resulting $W$-module is identified with a Verma module, and the

characteristic class of $M_r$ is the Whittaker vector

of that Verma module. One of the main ingredients of our construction

is the so-called cohomological Hall algebra of the

commuting variety, which is a certain associative algebra structure on

the direct sum of equivariant cohomology spaces

of the commuting varieties of $gl(r)$, for all $r$. Joint work with E. Vasserot.

Tue, 05 Jun 2012

15:45 - 16:45
L3

Free curves on varieties

Frank Gounelas
(Oxford)
Abstract

This talk will be about various ways in which a variety can be "connected by higher genus curves", mimicking the notion of rational connectedness. At least in characteristic zero, the existence of a curve with a large deformation space of morphisms to a variety implies that the variety is in fact rationally connected. Time permitting I will discuss attempts to show this result in positive characteristic.

Tue, 29 May 2012

15:45 - 16:45
L3

Fano 3-folds in codimension 4

Gavin Brown
(Loughborough)
Abstract

I show how to construct some Fano 3-folds that have the same Hilbert series but different Betti numbers, and so lie on different components of the Hilbert scheme. I would like to show where these fit in to a speculative (indeed fantastical) geography of Fano 3-folds, and how the projection methods I use may apply to other questions in the geography.

Tue, 22 May 2012

15:45 - 16:45
L3

From perfect obstruction theories to commutative differential graded algebras

Timo Schurg
(Bonn)
Abstract

A perfect obstruction theory for a commutative ring is a morphism from a perfect complex to the cotangent complex of the ring

satisfying some further conditions. In this talk I will present work in progress on how to associate in a functorial manner commutative

differential graded algebras to such a perfect obstruction theory. The key property of the differential graded algebra is that its zeroth homology

is the ring equipped with the perfect obstruction theory. I will also indicate how the method introduced can be globalized to work on schemes

without encountering gluing issues.

Tue, 15 May 2012

15:45 - 16:45
L3

Nekrasov's formula and refined sheaf counting

Balazs Szendroi
(Oxford)
Abstract

I revisit the identification of Nekrasov's K-theoretic partition function, counting instantons on $R^4$, and the (refined) Donaldson-Thomas partition function of the associated local Calabi-Yau threefold. The main example will be the case of the resolved conifold, corresponding to the gauge group $U(1)$. I will show how recent mathematical results about refined DT theory confirm this identification, and speculate on how one could lift the equality of partition functions to a structural result about vector spaces.

Tue, 01 May 2012

15:45 - 16:45
L3

Representability of moduli stacks

Jonathan Pridham
(Cambridge)
Abstract

Derived moduli stacks extend moduli stacks to give families over simplicial or dg rings. Lurie's representability theorem gives criteria for a functor to be representable by a derived geometric stack, and I will introduce a variant of it. This establishes representability for problems such as moduli of sheaves and moduli of polarised schemes.

Wed, 14 Mar 2012

15:45 - 16:45
L2

(HoRSe seminar) Defining the refined vertex using equivariant K-theory II

Nikita Nekrasov
(IHES)
Abstract

String theory derives the features of the quantum field theory describing the gauge interactions between the elementary particles in four spacetime dimensions from the physics of strings propagating on the internal manifold, e.g. a Calabi-Yau threefold. A simplified version of this correspondence relates the SU(2)-equivariant generalization of the Donaldson theory (and its further generalizations involving the non-abelian monopole equations) to the Gromov-Witten (GW) theory of the so-called local Calabi-Yau threefolds, for the SU(2) subgroup of the rotation symmetry group SO(4). In recent years the GW theory was related to the Donaldson-Thomas (DT) theory enumerating the ideal sheaves of curves and points. On the toric local Calabi-Yau manifolds the latter theory is studied using localization, producing the so-called topological vertex formalism (which was originally based on more sophisticated open-closed topological string dualities).

In order to accomodate the full SO(4)-equivariant version of the four dimensional Donaldson theory, the so-called "refined topological vertex" was proposed. Unlike that of the ordinary topological vertex, its relation to the DT theory remained unclear.

In these talks, based on joint work with Andrei Okounkov, this gap will be partially filled by showing that the equivariant K-theoretic version of the DT theory reproduces both the SO(4)-equivariant Donaldson theory in four dimensions, and the refined topologica vertex formalism, for all toric Calabi-Yau's admitting the latter.

Wed, 14 Mar 2012

14:00 - 15:00
L2

(HoRSe seminar) Defining the refined vertex using equivariant K-theory I

Nikita Nekrasov
(Paris)
Abstract

String theory derives the features of the quantum field theory describing the gauge interactions between the elementary particles in four spacetime dimensions from the physics of strings propagating on the internal manifold, e.g. a Calabi-Yau threefold. A simplified version of this correspondence relates the SU(2)-equivariant generalization of the Donaldson theory (and its further generalizations involving the non-abelian monopole equations) to the Gromov-Witten (GW) theory of the so-called local Calabi-Yau threefolds, for the SU(2) subgroup of the rotation symmetry group SO(4). In recent years the GW theory was related to the Donaldson-Thomas (DT) theory enumerating the ideal sheaves of curves and points. On the toric local Calabi-Yau manifolds the latter theory is studied using localization, producing the so-called topological vertex formalism (which was originally based on more sophisticated open-closed topological string dualities).

In order to accomodate the full SO(4)-equivariant version of the four dimensional Donaldson theory, the so-called "refined topological vertex" was proposed. Unlike that of the ordinary topological vertex, its relation to the DT theory remained unclear.

In these talks, based on joint work with Andrei Okounkov, this gap will be partially filled by showing that the equivariant K-theoretic version of the DT theory reproduces both the SO(4)-equivariant Donaldson theory in four dimensions, and the refined topological vertex formalism, for all toric Calabi-Yau's admitting the latter.

Tue, 13 Mar 2012

15:45 - 16:45
L3

A Uniqueness Theorem for Gluing Special Lagrangian Submanifolds

Yohsuke Imagi
(Kyoto)
Abstract

Special Lagrangian submanifolds are area minimizing Lagrangian submanifolds discovered by Harvey and Lawson. There is no obstruction to deforming compact special Lagrangian

submanifolds by a theorem of Mclean. It is however difficult to understand singularities of

special Lagrangian submanifolds (varifolds). Joyce has studied isolated singularities with multiplicity one smooth tangent cones. Suppose that there exists a compact special Lagrangian submanifold M of dimension three with one point singularity modelled on the Clliford torus cone. We may apply the gluing technique to M by a theorem of Joyce.

We obtain then a compact non-singular special Lagrangian submanifold sufficiently close to M as varifolds in Geometric Measure Theory. The main result of this talk is as follows: all special Lagrangian varifolds sufficiently close to M are obtained by the gluing technique.

The proof is similar to that of a theorem of Donaldson in the Yang-Mills theory.

One first proves an analogue of Uhlenbeck's removable singularities theorem in the Yang-Mills theory. One uses here an idea of a theorem of Simon, who proved the uniqueness of multiplicity one tangent cones of minimal surfaces. One proves next the uniqueness of local models for desingularizing M (see above) using symmetry of the Clifford torus cone.

These are the main part of the proof.

Tue, 06 Mar 2012

15:45 - 16:45
L3

(HoRSe seminar) Joyce-Song wall-crossing as an asymptotic expansion II

Jacopo Stoppa
(Cambridge)
Abstract

Joyce and Song expressed the wall-crossing behaviour of Donaldson-Thomas invariants using a sum over graphs. Joyce expected that these would have something to do with the Feynman diagrams of suitable physical theories. I will show how this can be achieved in the framework for wall-crossing proposed by Gaiotto, Moore and Neitzke. JS diagrams emerge from small corrections to a hyperkahler metric. The basics of GMN theory will be explained during the first talk.

Tue, 06 Mar 2012

14:00 - 15:00
SR1

(HoRSe seminar) Joyce-Song wall-crossing as an asymptotic expansion I

Jacopo Stoppa
(Cambridge)
Abstract

Joyce and Song expressed the wall-crossing behaviour of Donaldson-Thomas invariants using a sum over graphs. Joyce expected that these would have something to do with the Feynman diagrams of suitable physical theories. I will show how this can be achieved in the framework for wall-crossing proposed by Gaiotto, Moore and Neitzke. JS diagrams emerge from small corrections to a hyperkahler metric. The basics of GMN theory will be explained during the

first talk.

Tue, 28 Feb 2012

15:45 - 16:45
L3

Local symplectic field theory and stable hypersurfaces in symplectic blow-ups

Oliver Fabert
(Freiburg)
Abstract

Symplectic field theory (SFT) can be viewed as TQFT approach to Gromov-Witten theory. As in Gromov-Witten theory, transversality for the Cauchy-Riemann operator is not satisfied in general, due to the presence of multiply-covered curves. When the underlying simple curve is sufficiently nice, I will outline that the transversality problem for their multiple covers can be elegantly solved using finite-dimensional obstruction bundles of constant rank. By fixing the underlying holomorphic curve, we furthermore define a local version of SFT by counting only multiple covers of this chosen curve. After introducing gravitational descendants, we use this new version of SFT to prove that a stable hypersurface intersecting an exceptional sphere (in a homologically nontrivial way) in a closed four-dimensional symplectic manifold must carry an elliptic orbit. Here we use that the local Gromov-Witten potential of the exceptional sphere factors through the local SFT invariants of the breaking orbits appearing after neck-stretching along the hypersurface.

Tue, 21 Feb 2012

15:45 - 16:45
L3

Quadratic differentials as stability conditions

Tom Bridgeland
(Oxford)
Abstract

I will explain how moduli spaces of quadratic differentials on Riemann surfaces can be interpreted as spaces of stability conditions for certain 3-Calabi-Yau triangulated categories. These categories are defined via quivers with potentials, but can also be interpreted as Fukaya categories. This work (joint with Ivan Smith) was inspired by the papers of  Gaiotto, Moore and Neitzke, but connections with hyperkahler metrics, Fock-Goncharov coordinates etc. will not be covered in this talk.